河北省衡水2024届八上数学期末学业水平测试模拟试题含解析_第1页
河北省衡水2024届八上数学期末学业水平测试模拟试题含解析_第2页
河北省衡水2024届八上数学期末学业水平测试模拟试题含解析_第3页
河北省衡水2024届八上数学期末学业水平测试模拟试题含解析_第4页
河北省衡水2024届八上数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省衡水2024届八上数学期末学业水平测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列式子是分式的是()A. B. C.+y D.2.今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy(4y-2x-1)=-12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内应填写()A.3xy B.-3xy C.-1 D.13.如图,△ABC的角平分线BO、CO相交于点O,∠A=120°,则∠BOC=()A.150° B.140° C.130° D.120°4.将一块直角三角板按如图方式放置,其中,、两点分别落在直线、上,,添加下列哪一个条件可使直线().A. B. C. D.5.下列各式:,,,,其中分式共有几个().A.1 B.2 C.3 D.46.一次函数的图象经过点,且随的增大而减小,则的值是().A.2 B. C.0 D.7.如图,在中,,,是的平分线,,垂足为,若,则的周长为()A.10 B.15 C.10 D.208.如图△ABC,AB=7,AC=3,AD是BC边上的中线则AD的取值范围为()A.4<AD<10 B.2<AD<5 C.1<AD< D.无法确定9.如图,对一个正方形进行了分割,通过面积恒等,能够验证下列哪个等式()A. B.C. D.10.如图,点C在AB上,、均是等边三角形,、分别与交于点,则下列结论:①;②;③为等边三角形;④∥;⑤DC=DN正确的有()个A.2个 B.3个 C.4个 D.5二、填空题(每小题3分,共24分)11.分解因式:x2-9=_▲.12.若,为连续整数,且,则__________.13.如果一粒芝麻约有0.000002千克,那么10粒芝麻用科学记数法表示为_______千克.14.如图,在中,,的角平分线交于点,连接并延长交于,于,若,,则____________.15.如图,在等边中,D、E分别是边AB、AC上的点,且,则______16.在等腰中,AB为腰,AD为中线,,,则的周长为________.17.表中给出了直线上部分点的坐标值.02431则直线与两坐标轴围成的三角形面积等于______________.18.若m+n=1,mn=2,则的值为_____.三、解答题(共66分)19.(10分)节约用水是我们的美德,水龙头关闭不严会造成滴水,容器内盛水与滴水时间的关系用可以显示水量的容器做如图的试验,并根据试验数据绘制出如图的函数图象,结合图象解答下列问题.()容器内原有水多少升.()求与之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升.20.(6分)先化简再求值:,其中x=21.(6分)(1)问题:如图在中,,,为边上一点(不与点,重合),连接,过点作,并满足,连接.则线段和线段的数量关系是_______,位置关系是_______.(2)探索:如图,当点为边上一点(不与点,重合),与均为等腰直角三角形,,,.试探索线段,,之间满足的等量关系,并证明你的结论;(3)拓展:如图,在四边形中,,若,,请直接写出线段的长.22.(8分)甲、乙两车从A城出发沿一条笔直公路匀速行驶至B城在整个行驶过程中,甲、乙两车离开A城的距离千米与甲车行驶的时间小时之间的函数关系如图所示.,B两城相距______千米,乙车比甲车早到______小时;甲车出发多长时间与乙车相遇?若两车相距不超过20千米时可以通过无线电相互通话,则两车都在行驶过程中可以通过无线电通话的时间有多长?23.(8分)请按照研究问题的步骤依次完成任务.(问题背景)(1)如图1的图形我们把它称为“8字形”,请说理证明∠A+∠B=∠C+∠D.(简单应用)(2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=20°,∠ADC=26°,求∠P的度数(可直接使用问题(1)中的结论)(问题探究)(3)如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,猜想∠P的度数为;(拓展延伸)(4)在图4中,若设∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为(用x、y表示∠P);(5)在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、D的关系,直接写出结论.24.(8分)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.25.(10分)解方程组:(1)(2)26.(10分)按要求完成下列作图,不要求写作法,只保留作图痕迹.(1)已知:线段AB,作出线段AB的垂直平分线MN.(2)已知:∠AOB,作出∠AOB的平分线OC.(3)已知:线段a和b,求作:等腰三角形,使等腰三角形的底边长为a,底边上的高的长为b.

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据分式的定义:形如,A、B是整式,B中含有字母且B不等于0的式子叫做分式【题目详解】A.属于整式,不是分式;B.属于整式,不是分式;C.属于整式,不是分式;D.属于分式;故答案选D【题目点拨】本题主要考查了分式的概念,分式的分母必须含有字母,而分子可以含有字母,也可以不含字母.2、A【题目详解】解:∵左边=-3xy(4y-2x-1)=-12xy2+6x2y+3xy右边=-12xy2+6x2y+□,∴□内上应填写3xy故选:A.3、A【题目详解】解:∵∠BAC=120°,∴∠ABC+∠ACB=60°,∵点O是∠ABC与∠ACB的角平分线的交点,∴∠OBC+∠OCB=30°,∴∠BOC=150°.故选A.4、A【分析】根据平行线的性质即可得到∠2+∠BAC+∠ABC+∠1=180°,从而即可求出∠1的大小.【题目详解】解:∵直线m∥n,

∴∠2+∠BAC+∠ABC+∠1=180°,又∵,,,∴

故选:A.【题目点拨】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.5、B【分析】根据分式的定义,即可完成求解.【题目详解】、、的分母不含未知数,故不是分式;、符合分式定义,故为分式;故选:B.【题目点拨】本题考查了分式的知识;解题的关键是熟练掌握分式的定义,即可得到答案.6、D【分析】将点代入一次函数中,可得,随的增大而减小,可得,计算求解即可.【题目详解】∵一次函数的图象经过点,∴,解得:,∵随的增大而减小,∴<0,解得:<1,∴,故选:D.【题目点拨】本题考查了一次函数图象与系数的关系,明确:①k>0,y随x的增大而增大;当k<0时,y随x的增大而减小.7、C【分析】根据勾股定理即可求出AB,然后根据角平分线的性质和定义DC=DE,∠CAD=∠EAD,利用直角三角形的性质即可求出∠ADC=∠ADE,再根据角平分线的性质可得AE=AC,从而求出BE,即可求出的周长.【题目详解】解:∵在中,,,∴AB=∵是的平分线,∴DC=DE,∠CAD=∠EAD,∠DEA=90°∴∠ADC=90°-∠CAD=90°-∠EAD=∠ADE即DA平分∠CDE∴AE=AC=10cm∴BE=AB-AE=∴的周长=DE+DB+BE=DC+DB+BE=BC+BE=10+故选C.【题目点拨】此题考查的是勾股定理、角平分线的性质和直角三角形的性质,掌握用勾股定理解直角三角形、角平分线的性质和直角三角形的两个锐角互余是解决此题的关键.8、B【分析】先延长AD到E,且AD=DE,并连接BE,由于∠ADC=∠BDE,AD=DE,利用SAS易证△ADC≌△EDB,从而可得AC=BE,在△ABE中,再利用三角形三边的关系,可得4<AE<10,从而易求2<AD<1.【题目详解】延长AD到E,使AD=DE,连接BE,如图所示:∵AD=DE,∠ADC=∠BDE,BD=DC,∴△ADC≌△EDB(SAS)∴BE=AC=3,在△AEB中,AB-BE<AE<AB+BE,即7-3<2AD<7+3,∴2<AD<1,故选:B.【题目点拨】此题主要考查三角形三边关系:两边之和大于第三边,两边之差小于第三边.9、C【分析】观察图形的面积,从整体看怎么表示,再从分部分来看怎么表示,两者相等,即可得答案.【题目详解】解:由图可知:正方形面积=两个正方形面积+两个长方形的面积故选:C.【题目点拨】本题考查了乘法公式的几何背景,明确几何图形面积的表达方式,熟练掌握相关乘法公式,是解题的关键.10、C【分析】首先根据等边三角形的性质,运用SAS证明△ACE≌△DCB,即可得出AE=DB;再由ASA判定△AMC≌△DNC,得出CM=CN;由∠MCN=60°得出△CMN为等边三角形;再由内错角相等两直线平行得出MN∥BC;最后由∠DCN=∠CNM=60°,得出DC≠DN,即可判定.【题目详解】∵、均是等边三角形,∴∠DCA=∠ECB=60°,AC=DC,EC=BC∴∠DCE=60°∴∠DCA+∠DCE=∠ECB+∠DCE,即∠ACE=∠DCB∴△ACE≌△DCB(SAS)∴AE=DB,故①正确;∵△ACE≌△DCB,∴∠MAC=∠NDC,∵∠ACD=∠BCE=60°,∴∠MCA=∠DCN=60°,在△AMC和△DNC中∴△AMC≌△DNC(ASA),∴CM=CN,故②正确;∴△CMN为等边三角形,故③正确;∴∠NMC=∠NCB=60°,∴MN∥BC.故④正确;∵∠DCN=∠CNM=60°∴DC≠DN,故⑤错误;故选:C.【题目点拨】本题主要考查全等三角形的判定和性质,能灵活运用SSS、SAS、ASA、AAS和HL证明三角形全等是解题的关键.二、填空题(每小题3分,共24分)11、(x+3)(x-3)【题目详解】x2-9=(x+3)(x-3),故答案为(x+3)(x-3).12、7【分析】先根据无理数的估算求出a和b的值,然后代入a+b计算即可.【题目详解】解:∵,∴,∴,∴.故答案为:7.【题目点拨】此题主要考查了估算无理数的大小,运用“夹逼法”估算无理数的整数部分是解答本题的关键.13、2×10-1.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】0.000002×10=0.000020.00002用科学记数法表示为2×10-1千克,故答案为:2×10-1.【题目点拨】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14、10【分析】作交于,由平分,,得到,根据角平分线的定义得到,根据直角三角形的性质即可得到结论.【题目详解】解:作交于,∵平分,,∴,∵的角平分线交于点,∴平分,∵,∴,∴故答案为10【题目点拨】本题考查了角平分线的性质以及直角三角形中,角所对边为斜边的一半,灵活运用性质定理是解题的关键.15、1【分析】根据等边三角形的性质,得出各角相等各边相等,已知AD=CE,利用SAS判定△ADC≌△CEB,从而得出∠ACD=∠CBE,所以∠BCD+∠CBE=∠BCD+∠ACD=∠ACB=60°,进而利用四边形内角和解答即可.【题目详解】解:是等边三角形,≌.,,,故答案为1.【题目点拨】此题考查了等边三角形的性质及全等三角形的判定方法,常用的判定方法有SSS,SAS,AAS,HL等.16、12或10.1.【分析】如图1,根据等腰三角形的性质得到AD⊥BC,由勾股定理得到BD=4,于是得到△ABD的周长为12,如图2,在等腰△ABC中,AB=BC,求得BD=2.1,于是得到△ABD的周长为10.1.【题目详解】解:如图1,在等腰△ABC中,AB=AC,∵AD为中线,∴AD⊥BC,∴BD=,∴△ABD的周长=1+4+3=12,如图2,在等腰△ABC中,AB=BC,∵AD为中线,∴BD=BC=2.1,∴△ABD的周长=1+3+2.1=10.1,综上所述,△ABD的周长为12或10.1,故答案为:12或10.1.【题目点拨】本题考查了等腰三角形的性质以及勾股定理的应用,正确的分情况讨论是解题的关键.17、【分析】利用待定系数法求出直线1的解析式,得出与坐标轴的交点坐标,进而求解即可.【题目详解】设直线1的解析式为,

∵直线1过点(0,1)、(2,-1),

∴,解得,∴直线1的解析式为,

∵y=0时,;时,y=1,

∴直线1与轴的交点坐标是(1,0),与y轴的交点坐标是(0,1),∴直线1与两坐标轴围成的三角形的面积等于.故答案为:.【题目点拨】本题考查了一次函数图象上点的坐标特征,利用待定系数法求直线的解析式,三角形的面积,正确求出直线1的解析式是解题的关键.18、【解题分析】三、解答题(共66分)19、()容器的原有水;()一天滴水量为.【解题分析】试题分析:(1)由图象可知,当t=0时,w=0.3,即容器内原有水0.3升;(2)设w与t之间的函数关系式为w=kt+b,将(0,0.3),(1.5,0.9)代入,即可求出w与t之间的函数关系式;由解析式可知,每小时滴水量为0.4L,一天的滴水量为:0.4×24=9.6L.试题解析:(1)根据图象可知,t=0时,w=0.3,即容器内原有水0.3升;(2)设w与t之间的函数关系式为w=kt+b,将(0,0.3),(1.5,0.9)代入,得:,解得:,故w与t之间的函数关系式为w=0.4t+0.3;由解析式可知,每小时滴水量为0.4L,一天的滴水量为:0.4×24=9.6L,即在这种滴水状态下一天的滴水量是9.6升.考点:一次函数的应用.20、化简的结果是;.【分析】先计算括号里的减法,将进行因式分解,再将除法运算化为乘法运算,约分得到最简结果,将x的值代入计算即可求出值.【题目详解】解:===,当x=时,原式==【题目点拨】此题考查了分式的化简求值,以及解分式方程,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.21、(1)=;⊥;(2)+=;(3)2【分析】(1)根据同角的余角相等得出∠BAD=∠CAE,可证△ADB≌△AEC,由全等三角形的性质即可得出结果;(2)连结CE,同(1)的方法证得△ADB≌△AEC,根据全等三角形的性质转换角度,可得△DCE为直角三角形,即可得,,之间满足的等量关系;(3)在AD上方作EA⊥AD,连结DE,同(2)的方法证得△DCE为直角三角形,由已知和勾股定理求得DE的长,再根据等腰直角三角形的性质和勾股定理即可求得AD的长.【题目详解】解:=,⊥,理由如下:∵,,∴∠ABC=∠ACB=45°,∵,∴,∴,即,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE,∠ABD=∠ACE=45°,∴∠ACB+∠ACE=90°,即⊥,故答案为:=;⊥.(2)+=,证明如下:如图,连结CE,∵与均为等腰直角三角形,∴∠ABC=∠ACB=45°,,即,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE,∠ABD=∠ACE=45°,∴∠ACB+∠ACE=90°,即⊥,则△DCE为直角三角形,∴+=,∴+=;(3)如图,作EA⊥AD,使得AE=AD,连结DE、CE,∵,∴,AB=AC,∵,AE=AD,∴,,∴,即,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE,∵,则△DCE为直角三角形,∵,,∴,则,在Rt△ADE中,AD=AE,∴,则.【题目点拨】本题是四边形综合题,主要考查了全等三角形的判定与性质、勾股定理、等腰直角三角形的性质,解题的关键是合理得添加辅助线找出两个三角形全等.22、(1)300千米,1小时(2)2.5小时(3)1小时【解题分析】(1)根据函数图象可以直接得到A,B两城的距离,乙车将比甲车早到几小时;(2)由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,求得两函数图象的交点即可(3)再令两函数解析式的差小于或等于20,可求得t可得出答案.【题目详解】(1)由图象可知A、B两城市之间的距离为300km,甲比乙早到1小时,(2)设甲车离开A城的距离y与t的关系式为y甲=kt,

把(5,300)代入可求得k=60,

∴y甲=60t,

设乙车离开A城的距离y与t的关系式为y乙=mt+n,

把(1,0)和(4,300)代入可得,

解得:,

∴y乙=100t-100,

令y甲=y乙,可得:60t=100t-100,

解得:t=2.5,

即甲、乙两直线的交点横坐标为t=2.5,

∴甲车出发2.5小时与乙车相遇(3)当y甲-y乙=20时60t-100t+100=20,t=2当y乙-y甲=20时100t-100-60t=20,t=3∴3-2=1(小时)∴两车都在行驶过程中可以通过无线电通话的时间有1小时【题目点拨】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,特别注意t是甲车所用的时间.23、(1)见解析;(2)∠P=23º;(3)∠P=26º;(4)∠P=;(5)∠P=.【分析】(1)根据三角形内角和定理即可证明;

(2)如图2,根据角平分线的性质得到∠1=∠2,∠3=∠4,列方程组即可得到结论;

(3)由AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,推出∠1=∠2,∠3=∠4,推出∠PAD=180°-∠2,∠PCD=180°-∠3,由∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,推出2∠P=∠B+∠D,即可解决问题;

(4)根据题意得出∠B+∠CAB=∠C+∠BDC,再结合∠CAP=∠CAB,∠CDP=∠CDB,得到y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),从而可得∠P=y+∠CAB-∠CAB-∠CDB+∠CDB=;(5)根据题意得出∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,再结合AP平分∠BAD,CP平分∠BCD的外角∠BCE,得到∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,所以∠P=90°+∠BCD-∠BAD+∠D=.【题目详解】解:(1)证明:在△AOB中,∠A+∠B+∠AOB=180°,

在△COD中,∠C+∠D+∠COD=180°,

∵∠AOB=∠COD,

∴∠A+∠B=∠C+∠D;

(2)解:如图2,∵AP、CP分别平分∠BAD,∠BCD,

∴∠1=∠2,∠3=∠4,

由(1)的结论得:,①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D,∴∠P=(∠B+∠D)=23°;

(3)解:如图3,

∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,

∴∠1=∠2,∠3=∠4,

∴∠PAD=180°-∠2,∠PCD=180°-∠3,

∵∠P+(180°-∠1)=∠D+(180°-∠3),

∠P+∠1=∠B+∠4,

∴2∠P=∠B+∠D,

∴∠P=(∠B+∠D)=×(36°+16°)=26°;

故答案为:26°;

(4)由题意可得:∠B+∠CAB=∠C+∠BDC,即y+∠CAB=x+∠BDC,即∠CAB-∠BDC=x-y,∠B+∠BAP=∠P+∠PDB,即y+∠BAP=∠P+∠PDB,即y+(∠CAB-∠CAP)=∠P+(∠BDC-∠CDP),即y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),∴∠P=y+∠CAB-∠CAB-∠CDB+∠CDB=y+(∠CAB-∠CDB)=y+(x-y)=故答案为:∠P=;(5)由题意可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论