2024届湖北省武汉市江夏区第六中学八年级数学第一学期期末考试试题含解析_第1页
2024届湖北省武汉市江夏区第六中学八年级数学第一学期期末考试试题含解析_第2页
2024届湖北省武汉市江夏区第六中学八年级数学第一学期期末考试试题含解析_第3页
2024届湖北省武汉市江夏区第六中学八年级数学第一学期期末考试试题含解析_第4页
2024届湖北省武汉市江夏区第六中学八年级数学第一学期期末考试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省武汉市江夏区第六中学八年级数学第一学期期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.把分解因式得()A. B.C. D.2.11名同学参加数学竞赛初赛,他们的等分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的()A.平均数B.中位数C.众数D.方差3.在一张长为10cm,宽为8cm的矩形纸片上,要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的顶点A重合,其余的两个顶点都在矩形边上),这个等腰三角形有几种剪法()A.1 B.2 C.3 D.44.已知函数的部分函数值如下表所示,则该函数的图象不经过()…-2-101……0369…A.第一象限 B.第二象限 C.第三象限 D.第四象限5.的立方根为()A. B. C. D.6.下列命题是假命题的是()A.有一个外角是120°的等腰三角形是等边三角形B.等边三角形有3条对称轴C.有两边和一角对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等7.中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为82分,82分,245分2,190分2.那么成绩较为整齐的是()A.甲班 B.乙班 C.两班一样整齐 D.无法确定8.如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,若BD=6,则CD的长为()A.2 B.4 C.6 D.39.下列各式运算正确的是()A. B. C. D.10.若3x=15,3y=5,则3x-y等于()A.5 B.3 C.15 D.10二、填空题(每小题3分,共24分)11.计算:=_____.12.函数的自变量x的取值范围是______.13.在植树活动中,八年级一班六个小组植树的棵树分别是:5,7,3,,6,4.已知这组数据的众数是5,则该组数据的方差是_________.14.若(x+2y)(2x﹣ky﹣1)的结果中不含xy项,则k的值为_____.15._______.16.如图是外周边缘为正八边形的木花窗挂件,则这个正八边形的每个内角为_______.17.在平面直角坐标系中,一青蛙从点A(-1,0)处向右跳2个单位长度,再向上跳2个单位长度到点A′处,则点A′的坐标为________.18.点(−1,3)关于轴对称的点的坐标为____.三、解答题(共66分)19.(10分)如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.(1)依题意补全图形;(2)若∠PAC=20°,求∠AEB的度数;20.(6分)“换元法”是数学的重要方法,它可以使一些复杂的问题变为简单.例如:分解因式(x2+2x﹣2)(x2+2x)﹣3解:(x2+2x﹣2)(x2+2x)﹣3=(x2+2x)2﹣2(x2+2x)﹣3=(x2+2x﹣3)(x2+2x+1)=(x+3)(x﹣1)(x+1)2这里就是把x2+2x当成一个量,那么式子(x2+2x)2﹣2(x2+2x)﹣3看成一个关于x2+2x的二次三项式,就容易分解.(1)请模仿上面方法分解因式:x(x﹣4)(x﹣2)2﹣45(2)在(1)中,若当x2﹣4x﹣6=0时,求上式的值.21.(6分)已知,.(1)若,作,点在内.①如图1,延长交于点,若,,则的度数为;②如图2,垂直平分,点在上,,求的值;(2)如图3,若,点在边上,,点在边上,连接,,,求的度数.22.(8分)如图,在中,,是的一个外角.实验与操作:根据要求进行尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法)(1)作的平分线;(2)作线段的垂直平分线,与交于点,与边交于点,连接;(3)在(1)和(2)的条件下,若,求的度数.23.(8分)阅读下列解题过程,并解答下列问题.(1)观察上面的解题过程,请直接写出式子(2)计算:24.(8分)如图,一条直线分别与直线BE、直线CE、直线BF、直线CF相较于点A,G,H,D,且∠A=∠D,∠B=∠C.试判断∠1与∠2的大小关系,并说明理由.25.(10分)(1)计算:(11a3﹣6a1+3a)÷3a﹣1;(1)因式分解:﹣3x3+6x1y﹣3xy1.26.(10分)“六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:(1)小张如何进货,使进货款恰好为1300元?(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小张设计一个进货方案,并求出其所获利润的最大值.

参考答案一、选择题(每小题3分,共30分)1、D【分析】首先利用平方差公式分解因式,进而利用完全平方公式分解因式得出即可.【题目详解】解:

故选:D.【题目点拨】本题主要考查了公式法因式分解,正确应用乘法公式是解题关键.2、B【解题分析】试题分析:由于总共有11个人,且他们的分数互不相同,第6的成绩是中位数,要判断是否进入前6名,知道中位数即可.故答案选B.考点:中位数.3、B【解题分析】有两种情况:①当∠A为顶角时,如图1,此时AE=AF=5cm.②当∠A为底角时,如图2,此时AE=EF=5cm.故选B.4、D【解题分析】根据点的坐标,利用待定系数法可求出一次函数解析式,再利用一次函数图象与系数的关系可得出一次函数y=3x+1的图象经过第一、二、三象限,此题得解.【题目详解】解:将(-2,0),(-1,3)代入y=kx+b,得:,

解得:,

∴一次函数的解析式为y=3x+1.

∵3>0,1>0,

∴一次函数y=3x+1的图象经过第一、二、三象限.

故选:D.【题目点拨】本题考查了待定系数法求一次函数解析式以及一次函数图象与系数的关系,根据点的坐标,利用待定系数法求出一次函数解析式是解题的关键.5、A【分析】根据立方根的定义与性质即可得出结果【题目详解】解:∵∴的立方根是故选A【题目点拨】本题考查了立方根,关键是熟练掌握立方根的定义,要注意负数的立方根是负数.6、C【解题分析】解:A.外角为120°,则相邻的内角为60°,根据有一个角为60°的等腰三角形是等边三角形可以判断,故A选项正确;B.等边三角形有3条对称轴,故B选项正确;C.当两个三角形中两边及一角对应相等时,其中如果角是这两边的夹角时,可用SAS来判定两个三角形全等,如果角是其中一边的对角时,则可不能判定这两个三角形全等,故此选项错误;D.利用SSS.可以判定三角形全等.故D选项正确;故选C.7、B【分析】根据方差的意义知,方差越小,波动性越小,故成绩较为整齐的是乙班.【题目详解】由于乙的方差小于甲的方差,故成绩较为整齐的是乙班.故选B.【题目点拨】此题主要考查了方差,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8、D【分析】由作图过程可得DN是AB的垂直平分线,AD=BD=6,再根据直角三角形10度角所对直角边等于斜边一半即可求解.【题目详解】由作图过程可知:DN是AB的垂直平分线,∴AD=BD=6∵∠B=10°∴∠DAB=10°∴∠C=90°,∴∠CAB=60°∴∠CAD=10°∴CD=AD=1.故选:D.【题目点拨】本题考查了作图-基本作图、线段垂直平分线的性质、含10度角的直角三角形,解决本题的关键是掌握线段垂直平分线的性质.9、D【分析】计算出各个选项中式子的正确结果,然后对照即可得到哪个选项是正确的.【题目详解】解:∵,故选项A错误;∵,故选项B错误;∵,故选项C错误;∵,故选项D正确;故选D.【题目点拨】本题考查二次根式的混合运算,解题的关键是明确二次根式混合运算的计算方法.10、B【解题分析】试题分析:3x-y=3x÷3y=15÷5=3;故选B.考点:同底数幂的除法.二、填空题(每小题3分,共24分)11、【解题分析】根据算术平方根的定义求解可得.【题目详解】解:=故答案为:【题目点拨】本题考查算术平方根,解题关键是熟练掌握算术平方根的定义.12、x≤3【解题分析】由题意可得,3-x≥0,解得x≤3.故答案为x≤3.13、【分析】根据众数、平均数、方差的定义进行计算即可.【题目详解】∵这组数据5、7、3、x、6、4的众数是5,∴x=5,∴这组数据5、7、3、5、6、4的平均数是=5,∴S2=[(5−5)2+(7−5)2+(3−5)2+(5−5)2+(6−5)2+(4−5)2]=,故答案为.【题目点拨】本题考查了众数、方差,掌握众数、平均数、方差的定义是解题的关键.14、1【分析】根据多项式乘以多项式法则展开,合并同类项,即可得出﹣k+1=0,求出即可.【题目详解】解:(x+2y)(2x﹣ky﹣1)=2x2﹣kxy﹣x+1xy﹣2ky2﹣2y=2x2+(﹣k+1)xy﹣2ky2﹣2y﹣x,∵(x+2y)(2x﹣ky﹣1)的结果中不含xy项,∴﹣k+1=0,解得:k=1,故答案为1.【题目点拨】本题考查了多项式乘以多项式法则,能根据多项式乘以多项式法则展开是解此题的关键.15、1【分析】根据负整数指数幂,零指数幂,整数指数幂的运算法则计算即可.【题目详解】原式=+1-=1,故答案为:1.【题目点拨】本题考查了实数的运算,掌握负整数指数幂,零指数幂,整数指数幂的运算法则是解题关键.16、135°【分析】根据正多边形的内角和公式计算即可.【题目详解】∵八边形的内角和为(8-2)×180°=1080°,∴正八边形的每个内角为1080°÷8=135°,故答案为:135°.【题目点拨】本题考查了正多边形的内角和,掌握知识点是解题关键.17、(1,2)【解题分析】根据向右移动,横坐标加,纵坐标不变;向上移动,纵坐标加,横坐标不变解答点A(-1,0)向右跳2个单位长度,-1+2=1,向上2个单位,0+2=2,所以点A′的坐标为(1,2).18、(-1,-3).【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【题目详解】解:点(-1,3)关于x轴对称的点的坐标为(-1,-3),

故答案是:(-1,-3).【题目点拨】此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标变化规律.三、解答题(共66分)19、(1)见详解;(2)60°【分析】(1)作出点C关于直线AP的对称点为点D,连接AD,BD,即可得到所作图形;(2)由等边三角形的性质和轴对称的性质,可得AB=AD,∠BAD=100°,结合三角形内角和定理,求出∠ADB的度数,然后由三角形外角的性质,即可求解.【题目详解】(1)补全图形,如图所示:(2)∵点C关于直线AP的对称点为点D,∴AC=AD,∠PAD=∠PAC=20°,∵三角形ABC是等边三角形,∴AB=AC,∠BAC=60°,∴AB=AD,∠BAD=60°+20°+20°=100°,∴∠ADB=(180°-100°)÷2=40°,∴∠AEB=∠ADB+∠PAD=40°+20°=60°.【题目点拨】本题主要考查等边三角形的性质,等腰三角形的性质,轴对称的性质,三角形内角和定理以及三角形外角的性质,熟练掌握上述性质定理,是解题的关键.20、(1)见解析;(2)1【分析】(1)原式整理后,仿照题中的方法分解即可;(2)把已知等式变形后代入计算即可求出所求.【题目详解】解:(1)x(x﹣4)(x﹣2)2﹣45=(x2﹣4x)(x2﹣4x+4)﹣45=(x2﹣4x)2+4(x2﹣4x)﹣45=(x2﹣4x+9)(x2﹣4x﹣5)=(x2﹣4x+9)(x﹣5)(x+1),故答案为:(x2﹣4x+9)(x﹣5)(x+1);(2)当x2﹣4x﹣6=0,即x2﹣4x=6时,原式=(x2﹣4x+9)(x2﹣4x﹣5)=(6+9)×(6﹣5)=1,故答案为:1.【题目点拨】本题考查了因式分解的方法,“换元法”在因式分解中的应用,整体代换的思想在解题中的应用,掌握“换元法”分解因式是解题的关键.21、(1)①15°;②;(2)【分析】(1)①根据等腰直角三角形的性质,连接,得,,所对的直角边是斜边的一半,可得,所以可得,,,和是等腰三角形,由外角性质计算可得;②构造“一线三垂直”模型,证明三角形,利用面积比等于等高的三角形的底边的比,结合已知条件即可解得.(2)构造等边,通过证明,等边代换,得出等腰三角形,代入角度计算即得.【题目详解】(1)①连接AE,在,因为,,,,,,,,,,,,,,故答案为:.②过C作交DF延长线于G,连接AEAD垂直平分BE,,,,,故答案为:;(2)以AB向下构造等边,连接DK,延长AD,BK交于点T,,,,,,,等边中,,,,,在和中,,等边三角形三线合一可知,BD是边AK的垂直平分线,,,,,故答案为:.【题目点拨】考查了等腰直角三角形的性质,外角的性质,等腰三角形的判定和性质,构造等边三角形的方法证明全等,全等三角形的性质应用很关键,熟记几何图形的性质和判定是解决图形问题的重要方法依据.22、(1)见解析;(2)见解析;(3)55°.【分析】(1)先以A为圆心,任意长为半径作圆,交AD,AC边于两点,再分别以这两点为圆心大于两点距离一半为半径作圆相交于一点,再连接A和这一点作出AM;(2)分别以A、C为圆心,大于AC为半径作圆交于两点,连接两点即可作出AC的垂直平分线;(3)通过垂直平分线和角平分线得出,从而求出∠B的度数.【题目详解】(1)先以A为圆心,任意长为半径作圆,交AD,AC边于两点,再以这两点为圆心作圆相交于一点,再连接A和这一点作出AM;(2)分别以A、C为圆心,大于AC为半径作圆交于两点,连接两点即可作出AC的垂直平分线;【题目点拨】本题是对平行四边形知识的考查,熟练掌握尺规作图和平行四边形知识是解决本题的关键.23、(1);(2)【分析】(1)根据题意,将其分母有理化化简即可;(2)根据已知式子的规律,变形化简即可.【题目详解】解:(1)故答案为:;(2)原式【题目点拨】此题考查的是分母有理化的应用,掌握利用分母有理化化简是解决此题的关键.24、相等,理由见解析【分析】先推出AB∥CD,得出∠AEC=∠C,再根据∠B=∠C,即可得出∠B=∠AEC,可得CE∥BF,即可证明∠1=∠1.【题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论