第三讲-数论专题-学生版_第1页
第三讲-数论专题-学生版_第2页
第三讲-数论专题-学生版_第3页
第三讲-数论专题-学生版_第4页
第三讲-数论专题-学生版_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

遥行教育 预初试讲讲义 宋老师第三讲数论专题重点知识点:一、整除性质①如果自然数a为M的倍数,则ka为M的倍数。(k为正整数)②如果自然数a、b均为M的倍数,则a+b,a-b均为M的倍数。③如果a为M的倍数,p为M的约数,则a为p的倍数。④如果a为M的倍数,且a为N的倍数,则a为[M,N]的倍数。二、整除特征1.末位系列(2,5)末位(4,25)末两位(8,125)末三位2.数段和系列3、9各位数字之和——任意分段原则(无敌乱切法)33,99两位截断法——偶数位任意分段原则3.数段差系列11整除判断:奇和与偶和之差余数判断:奇和-偶和(不够减补十一,直到够减为止)7、11、13—三位截断法:从右往左,三位一隔:整除判断:奇段和与偶段和之差余数判断:奇段和-偶段和(不够减则补,直到够减)三、整除技巧:1.除数分拆:(互质分拆,要有特征)2.除数合并:(结合试除,或有特征)3.试除技巧:(末尾未知,除数较大)4.同余划删:(从前往后,剩的纯粹)5.断位技巧:(两不得罪,最小公倍)四、约数三定律约数个数定律:(指数+1)再连乘约数和定律:(每个质因子不同次幂相加)再连乘约数积定律:自身n(n=约数个数÷2)2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.3.同余定理若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:a≡b(modm),左边的式子叫做同余式。同余式读作:a同余于b,模m。由同余的性质,我们可以得到一个非常重要的推论:若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m整除用式子表示为:如果有a≡b(modm),那么一定有a-b=mk,k是整数,即m|(a-b)三、弃九法原理:任何一个整数模9同余于它的各数位上数字之和。以后我们求一个整数被9除的余数,只要先计算这个整数各数位上数字之和,再求这个和被9除的余数即可。例:检验算式四、中国剩余定理:一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。先由,即5和7的最小公倍数出发,先看35除以3余2,不符合要求,那么就继续看5和7的“下一个”倍数是否可以,很显然70除以3余1类似的,我们再构造一个除以5余1,同时又是3和7的公倍数的数字,显然21可以符合要求。最后再构造除以7余1,同时又是3,5公倍数的数字,45符合要求,那么所求的自然数可以这样计算:,其中k是从1开始的自然数。也就是说满足上述关系的数有无穷多,如果根据实际情况对数的范围加以限制,那么我们就能找到所求的数。例如对上面的问题加上限制条件“满足上面条件最小的自然数”,那么我们可以计算得到所求如果加上限制条件“满足上面条件最小的三位自然数”,我们只要对最小的23加上[3,5,7]即可,即23+105=128。例题:【例1】一列数,前几个数是1,3,8,21,55,144,377,987,…,通过观察中间数的3倍都是它前后相邻2个数之和,求:这列数中的第2011个数除以6所得的余数是几?【巩固】有一串数:5,8,13,21,34,55,89,…,其中第一个数是5,第二个数是8,从第三个数起,每个数恰好是前两个数的和。那么在这串数中,第2011个数被3除后所得余数是几?【例2】有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是______。【例3】一个自然数除429、791、500所得的余数分别是a+5、2a、a,求这个自然数和a的值。【巩固】学前班有几十位小朋友,老师买来176个苹果,216块饼干,324粒糖,并将它们尽可能地平均分给每位小朋友。余下的苹果、饼干、糖的数量之比是1∶2∶3,问学前班有多少位小朋友?【例4】一个自然数被7,8,9除的余数分别是1,2,3,并且三个商数的和是570,求这个自然数。【拓展】一个大于10的自然数,除以5余3,除以7余1,除以9余4,那么满足条件的自然数最小为____。【例5】已知a=20082008…2008,问:a除以13所得的余数是______。2008个2008课后练习1、(全国小学数学奥林匹克试题)两数相除,商4余8,被除数、除数、商数、余数四数之和等于415,则被除数是_______.2、已知2008被一些自然数去除,所得的余数都是10,那么这样的自然数共有多少个?3、(全国小学数学奥林匹克试题)六张卡片上分别标上1193、1258、1842、1866、1912、2494六个数,甲取3张,乙取2张,丙取1张,结果发现甲、乙各自手中卡片上的数之和一个人是另—个人的2倍,则丙手中卡片上的数是________.4、求的余数5、已知60,154,200被某自然数除所得的余数分别是,,,求该自然数的值.6、有三所学校,高中A校比B校多10人,B校比C校多10人.三校共有高中生2196人.有一所学校初中人数是高中人数的2倍;有一所学校初中人数是高中人数的1.5倍;还有一所学校高中、初中人数相等.三所学校总人数是5480人,那么A校总人数是________人.6、三个质数的乘积恰好等于它们的和的7倍,求这三个质数.7、有一个大于1的整数,除所得的余数相同,求这个数.8、将1至2008这2008个自然数,按从小到大的次序依次写出,得一个多位数:123

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论