




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京市丰台区第二中学八年级数学第一学期期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,中,,于,平分,且于,与相交于点,是边的中点,连接与相交于点,下列结论正确的有()个①;②;③;④是等腰三角形;⑤.A.个 B.个 C.个 D.个2.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.00000000034米,将这个数用科学记数法表示为A. B. C. D.3.已知关于x,y的二元一次方程组的解为,则a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣34.如图,在等腰中,,是斜边的中点,交边、于点、,连结,且,若,,则的面积是()A.2 B.2.5 C.3 D.3.55.满足不等式的正整数是()A.2.5 B. C.-2 D.56.已知是二元一次方程组的解,则的值为A.-1 B.1 C.2 D.37.已知点关于x轴对称点的坐标是(-1,2),则点的坐标为()A.(1,2) B.(1,-2) C.(2,-1) D.(-1,-2)8.如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片张.()A.2 B.3 C.4 D.69.计算的结果,与下列哪一个式子相同?()A. B. C. D.10.若,的值均扩大为原来的3倍,则下列分式的值保持不变的是()A. B. C. D.11.已知a、b、c是△ABC三边的长,则+|a+b-c|的值为()A.2a B.2b C.2c D.一12.已知如图,平分,于点,点是射线上的一个动点,若,,则的最小值是()A.2 B.3 C.4 D.不能确定二、填空题(每题4分,共24分)13.若数据的方差是,则数据的方差是__________.14.如图,△ABC是等边三角形,AB=6,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)证明:在运动过程中,点D是线段PQ的中点;(2)当∠BQD=30°时,求AP的长;(3)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.15.如图,等腰△ABC中,AB=AC,∠BAC=120°,AE⊥AC,DE垂直平分AB于D,若DE=2,则EC=_____.16.当__________时,分式的值等于零.17.在某公益活动中,小明对本年级同学的捐款情况进行了统计,绘制成如图所示的不完整的统计图,其中捐10元的人数占年级总人数的25%,则本次捐款20元的人数为______人.18.十二边形的内角和是________度.正五边形的每一个外角是________度.三、解答题(共78分)19.(8分)如图,在△ABC中,∠BAC=60°,∠C=40°,P,Q分别在BC,CA上,AP,BQ分别是∠BAC,∠ABC的角平分线.求证:BQ+AQ=AB+BP.20.(8分)在△ABC中,AB=AC,D、E分别在BC和AC上,AD与BE相交于点F.(1)如图1,若∠BAC=60°,BD=CE,求证:∠1=∠2;(2)如图2,在(1)的条件下,连接CF,若CF⊥BF,求证:BF=2AF;(3)如图3,∠BAC=∠BFD=2∠CFD=90°,若S△ABC=2,求S△CDF的值.21.(8分)如图,在中,,且,点是线段上一点,且,连接BE.(1)求证:(2)若,求的度数.22.(10分)在平面直角坐标系xOy中,△ABC的位置如图所示,直线l经过点(0,1),并且与x轴平行,△A1B1C1与△ABC关于直线l对称.(1)画出三角形A1B1C1;(2)若点P(m,n)在AC边上,则点P关于直线l的对称点P1的坐标为;(3)在直线l上画出点Q,使得QA+QC的值最小.23.(10分)已知如图∠B=∠C,∠1=∠2,∠BAD=40°,求∠EDC度数.24.(10分)如图,表示某商场一天的手提电脑销售额与销售量的关系,表示该商场一天的手提电脑销售成本与销售量的关系.(1)当销售量台时,销售额_______________万元,销售成本___________万元,利润(销售额销售成本)_____________万元.(2)一天销售__________台时,销售额等于销售成本.(3)当销售量________时,该商场盈利(收入大于成本),当销售量__________时,该商场亏损(收入小于成本).(4)对应的函数关系式是______________.(5)请你写出利润(万元)与销售量(台)间的函数关系式_____________,其中,的取值范围是__________.25.(12分)如图,长方体底面是长为2cm宽为1cm的长方形,其高为8cm.(1)如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,请利用侧面展开图计算所用细线最短需要多少?(2)如果从点A开始经过4个侧面缠绕2圈到达点B,那么所用细线最短需要多少?26.阅读下面的材料:我们可以用配方法求一个二次三项式的最大值或最小值,例如:求代数式的最小值.方法如下:∵,由,得;∴代数式的最小值是4.(1)仿照上述方法求代数式的最小值.(2)代数式有最大值还是最小值?请用配方法求出这个最值.
参考答案一、选择题(每题4分,共48分)1、B【分析】只要证明△BDF≌△CDA,△BAC是等腰三角形,∠DGF=∠DFG=67.5°,即可判断①②③④正确,作GM⊥BD于M,只要证明GH<DG即可判断⑤错误.【题目详解】∵CD⊥AB,BE⊥AC,∴∠BDC=∠ADC=∠AEB=90°,∴∠A+∠ABE=90°,∠ABE+∠DFB=90°,∴∠A=∠DFB,∵∠ABC=45°,∠BDC=90°,∴∠DCB=90°−45°=45°=∠DBC,∴BD=DC,在△BDF和△CDA中,∴△BDF≌△CDA(AAS),∴BF=AC,故①正确.∵∠ABE=∠EBC=22.5°,BE⊥AC,∴∠A=∠BCA=67.5°,故③正确,∴BA=BC,∵BE⊥AC,∴AE=EC=AC=BF,故②正确,∵BE平分∠ABC,∠ABC=45°,∴∠ABE=∠CBE=22.5°,∵∠BDF=∠BHG=90°,∴∠BGH=∠BFD=67.5°,∴∠DGF=∠DFG=67.5°,∴DG=DF,故④正确.作GM⊥AB于M.∵∠GBM=∠GBH,GH⊥BC,∴GH=GM<DG,∴S△DGB>S△GHB,∵S△ABE=S△BCE,∴S四边形ADGE<S四边形GHCE.故⑤错误,∴①②③④正确,故选:B.【题目点拨】此题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,全等三角形的性质和判定,三角形的面积等知识点的综合运用,第五个问题难度比较大,添加辅助线是解题关键,属于中考选择题中的压轴题.2、C【解题分析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).0.00000000034第一个有效数字前有10个0(含小数点前的1个0),从而.故选C.3、B【题目详解】把代入方程组得:,解得:,所以a−2b=−2×()=2.故选B.4、B【分析】首先根据等腰直角三角形的性质和余角的性质可证明△BPE≌△CPD,可得PE=PD,于是所求的的面积即为,故只要求出PE2的值即可,可过点E作EF⊥AB于点F,如图,根据题意可依次求出BE、BF、BP、PF的长,即可根据勾股定理求出PE2的值,进而可得答案.【题目详解】解:在中,∵,AC=BC,是斜边的中点,∴AP=BP=CP,CP⊥AB,∠B=∠BCP=∠DCP=45°,∵∠DPC+∠EPC=90°,∠BPE+∠EPC=90°,∴∠DPC=∠BPE,在△BPE和△CPD中,∵∠B=∠DCP,BP=CP,∠BPE=∠DPC,∴△BPE≌△CPD(ASA),∴PE=PD,∵,,∴CE=1,BE=3,过点E作EF⊥AB于点F,如图,则EF=BF=,又∵BP=,∴,在直角△PEF中,,∴的面积=.故选:B.【题目点拨】本题考查了等腰直角三角形的性质和判定、全等三角形的判定和性质、勾股定理和三角形的面积等知识,属于常考题型,熟练掌握上述基本知识是解题的关键.5、D【解题分析】在取值范围内找到满足条件的正整数解即可.【题目详解】不等式的正整数解有无数个,四个选项中满足条件的只有5故选:D.【题目点拨】考查不等式的解,使不等式成立的未知数的值就是不等式的解.6、A【解题分析】试题分析:∵已知是二元一次方程组的解,∴由①+②,得a=2,由①-②,得b=3,∴a-b=-1;故选A.考点:二元一次方程的解.7、D【解题分析】关于x轴对称的点,横坐标相同,纵坐标互为相反数.【题目详解】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,∴点关于x轴对称点的坐标是(-1,2),则点的坐标为(-1,-2).故选:D.【题目点拨】解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数.8、B【分析】拼成的大长方形的面积是(a+1b)(a+b)=a1+3ab+1b1,即需要一个边长为a的正方形,1个边长为b的正方形和3个C类卡片的面积是3ab.【题目详解】(a+1b)(a+b)=a1+3ab+1b1.则需要C类卡片3张.故选:B.【题目点拨】本题考查了多项式乘多项式的运算,需要熟练掌握运算法则并灵活运用,利用各个面积之和等于总的面积也比较关键.9、D【分析】由多项式乘法运算法则:两多项式相乘时,用一个多项式的各项去乘另一个多项式的每一项,再把所得的积相加,合并同类项后所得的式子就是它们的积.【题目详解】解:由多项式乘法运算法则得.故选D.【题目点拨】本题考查多项式乘法运算法则,牢记法则,不要漏项是解答本题的关键.10、D【分析】分别写出、都扩大3倍后的分式,再化简与原式比较,即可选择.【题目详解】当、都扩大3倍时,A、,故A错误.B、,故B错误.C、,故C错误.D、,故D正确.故选D.【题目点拨】本题考查分式的基本性质,解题关键是熟练化简分式.11、B【解题分析】试题解析:∵三角形两边之和大于第三边,两边之差小于第三边,
∴a-b-c<0,a+b-c>0
∴+|a+b-c|=b+c-a+a+b-c=2b.
故选B.12、A【分析】根据题意点Q是射线OM上的一个动点,要求PQ的最小值,需要找出满足题意的点Q,根据直线外一点与直线上各点连接的所有线段中,垂线段最短,所以我们过点P作PQ垂直OM,此时的PQ最短,然后根据角平分线上的点到角两边的距离相等可得PA=PQ,利用已知的PA的值即可求出PQ的最小值.【题目详解】解:过点P作PQ⊥OM,垂足为Q,则PQ为最短距离,
∵OP平分∠MON,PA⊥ON,PQ⊥OM,
∴PA=PQ,
∵∠AOP=∠MON=30°,
∴PA=2,
∴PQ=2.
故选:A.【题目点拨】此题主要考查了角平分线的性质,本题的关键是要根据直线外一点与直线上各点连接的所有线段中,垂线段最短,找出满足题意的点Q的位置是解题的关键.二、填空题(每题4分,共24分)13、0.7【分析】根据方差的意义与求法将第一组数据中的的值求出来,再代入第二组数据求方差即可.但仔细观察可以发现,第二组数据每一个数都是在第一组数据的基础上加10,其波动情况并没有发生变化,故方差没有变化,也是0.7.【题目详解】解:根据方差的意义,第二组数据每一个数都是在第一组数据基础上加了10,波动情况没有发生变化,故其方差也为0.7.故答案为:0.7.【题目点拨】本题主要考查了方差的意义,深刻理解其意义是解答关键.14、(1)见解析;(2)AP=2;(1)DE的长不变,定值为1.【分析】(1)过P作PF∥QC交AB于F,则是等边三角形,根据AAS证明三角形全等即可;(2)想办法证明BD=DF=AF即可解决问题;(1)想办法证明即可解决问题.【题目详解】(1)证明:过P作PF∥QC交AB于F,则是等边三角形,∵P、Q同时出发,速度相同,即BQ=AP,∴BQ=PF,在和中,,∴,∴DQ=DP;(2)解:∵,∴BD=DF,∵,∴,∴,∴AP=2;(1)解:由(2)知BD=DF,∵是等边三角形,PE⊥AB,∴AE=EF,∴DE=DF+EF=1,为定值,即DE的长不变.【题目点拨】本题主要考查了三角形全等的性质及判定,以及三角形中的动点问题,熟练掌握相关几何综合的解法是解决本题的关键.15、1【分析】由DE垂直平分AB,可得AE=BE,由△ABC中,AB=AC,∠BAC=120°,可求得∠B=∠C=∠EAB=30°,继而求得AE的长,继而求得答案.【题目详解】∵△ABC中,AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵DE垂直平分AB,∴AE=BE,∴∠EAB=∠B=30°,∴AE=BE=2DE=2×2=4,∴∠EAC=∠BAC-∠BAE=90°,∴CE=2AE=1,故答案为1.【题目点拨】此题考查了线段垂直平分线的性质以及含30°角的直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.16、-2【分析】令分子为0,分母不为0即可求解.【题目详解】依题意得x2-4=0,x-2≠0,解得x=-2,故填:-2.【题目点拨】此题主要考查分式的值,解题的关键是熟知分式的性质.17、35【解题分析】分析:根据捐款10元的人数占总人数25%可得捐款总人数,将总人数减去其余各组人数可得答案.详解:根据题意可知,本年级捐款捐款的同学一共有20÷25%=80(人),则本次捐款20元的有:80−(20+10+15)=35(人),故答案为35.点睛:本题考查了条形统计图.计算出捐款总人数是解决问题的关键.18、18001【分析】根据多边形的内角和,多边形的外角和等于360°即可得到解答.【题目详解】解:十二边形的内角和,正五边形的每一个外角,故答案为:1800,1.【题目点拨】本题考查了多边形的内角与外角,熟练掌握多边形的内角和和外角和是解题的关键.三、解答题(共78分)19、证明见解析.【分析】延长AB到D,使BD=BP,连接PD,由题意得:∠D=∠1=∠4=∠C=40°,从而得QB=QC,易证△APD≌△APC,从而得AD=AC,进而即可得到结论.【题目详解】延长AB到D,使BD=BP,连接PD,则∠D=∠1.∵AP,BQ分别是∠BAC,∠ABC的平分线,∠BAC=60°,∠ACB=40°,∴∠1=∠2=30°,∠ABC=180°-60°-40°=80°,∠3=∠4=40°=∠C,∴QB=QC,又∠D+∠1=∠3+∠4=80°,∴∠D=40°.在△APD与△APC中,∴△APD≌△APC(AAS),∴AD=AC.∴AB+BD=AQ+QC,∴AB+BP=BQ+AQ.【题目点拨】本题主要考查等腰三角形的判定和性质,三角形全等的判定和性质定理,添加合适的辅助线,构造等腰三角形和全等三角形,是解题的关键.20、(1)见解析;(2)见解析;(3)【分析】(1)根据等边三角形的判定定理得到△ABC为等边三角形,得到AB=BC,∠ABC=∠C=60°,证明△ABD≌△BCE,根据全等三角形的性质证明结论;(2)过B作BH⊥AD,根据全等三角形的性质得到∠BAD=∠CBE,证明△AHB≌△BFC,根据全等三角形的性质解答;(3)过C作CM⊥AD交AD延长线于M,过C作CN⊥BE交BE延长线于N,根据角平分线的性质得到CM=CN,证明△AFB≌△CMA,根据全等三角形的性质得到BF=AM,AF=CM,根据三角形的面积公式列式计算即可.【题目详解】(1)证明:∵AB=AC,∠BAC=60°,∴△ABC为等边三角形,∴AB=BC,∠ABC=∠C=60°,在△ABD和△BCE中,,∴△ABD≌△BCE(SAS),∴∠1=∠2;(2)如图2,过B作BH⊥AD,垂足为H,∵△ABD≌△BCE,∴∠BAD=∠CBE,∵∠ABF+∠CBE=60°,∴∠BFD=∠ABF+∠BAD=60°,∴∠FBH=30°,∴BF=2FH,在△AHB和△BFC中,∴△AHB≌△BFC(AAS),∴BF=AH=AF+FH=2FH,∴AF=FH,∴BF=2AF;(3)如图3,过C作CM⊥AD交AD延长线于M,过C作CN⊥BE交BE延长线于N,∵∠BFD=2∠CFD=90°,∴∠EFC=∠DFC=45°,∴CF是∠MFN的角平分线,∴CM=CN,∵∠BAC=∠BFD=90°,∴∠ABF=∠CAD,在△AFB和△CMA中,∴△AFB≌△CMA(AAS)∴BF=AM,AF=CM,∴AF=CN,∵∠FMC=90°,∠CFM=45°,∴△FMC为等腰直角三角形,∴FM=CM,∴BF=AM=AF+FM=2CM,∵∴S△BDF=2S△CDF,∵AF=CM,FM=CM,∴AF=FM,∴F是AM的中点,∴,∵AF⊥BF,CN⊥BF,AF=CN,∴S△AFB=S△BFC,设S△CDF=x,则S△BDF=2x,∴S△AFB=S△BFC=3x∴,则3x+3x+x=2,解得,x=,即S△CDF=.【题目点拨】本题考查了全等三角形的判定和性质、三角形的面积计算,掌握全等三角形的判定定理和性质定理是解题的关键.21、(1)见详解;(2)33°【分析】(1)根据题意可得≌(HL);(2)根据中得到为等腰直角三角形,得到,根据≌得到,即可求出答案.【题目详解】(1)∵∴=90°∵在和中∴≌(HL)(2)∵中∴∵≌∴∵中,∴∵∴=33°.【题目点拨】此题主要考查了全等三角形的性质和判定及三角形内角度数的计算,熟记概念是解题的关键.22、(1)详见解析;(2)(m,2﹣n);(3)详见解析.【分析】(1)分别作出△ABC的三个顶点关于直线l的对称点,再首尾顺次连接即可;(2)由题意得:两点的横坐标相等,对称点P1的纵坐标为1﹣(n﹣1),从而得出答案;(3)利用轴对称的性质求解可得.【题目详解】(1)如图所示,△A1B1C1即为所求;(2)若点P(m,n)在AC边上,则点P关于直线l的对称点P1的坐标为(m,2﹣n),故答案为:(m,2﹣n);(3)如图所示,点Q即为所求.【题目点拨】本题主要考查直角坐标系中,图形的轴对称以及轴对称的性质,掌握轴对称的性质是解题的关键.23、∠EDC=20°.【分析】三角形的外角性质知:∠EDC+∠1=∠B+40°,∠2=∠EDC+∠C,结合∠1=∠2,∠B=∠C,进行等量代换,即可求解.【题目详解】∵∠ADC是△ABD的一个外角,∴∠ADC=∠B+∠BAD,即∠EDC+∠1=∠B+40°,①同理:∠2=∠EDC+∠C,∵∠1=∠2,∠B=∠C,∴∠1=∠EDC+∠B,②把②代入①得:2∠EDC+∠B=∠B+40°,解得:∠EDC=20°.【题目点拨】本题主要考查三角形外角的性质,熟练掌握外角的性质,列出等式,是解题的关键.24、(1)2,3,-1;(2)4;(3)大于4台,小于4台;(4)y=x;(5)Q=,x≥0且x为整数.【分析】(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 购销合同协议封面
- 右美托咪定对全身麻醉患者血钾水平的影响研究
- 碳化硅结势垒肖特基二极管结构设计仿真研究
- 2025-2030中国止痛药递送行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国樱桃果树行业市场发展深度分析及投资前景研究报告
- 2025-2030中国果酒行业市场发展分析及前景趋势与投资研究报告
- 2025年平面设计师专业能力测试卷:平面设计创意思维训练与拓展能力测试试题
- 2025年度医院信息化建设计划
- 物流仓储自动化设备升级改造方案
- 2025年无人机驾驶员职业技能考核试卷(实操篇)
- 2023年供货方案 医疗器械供货方案(四篇)
- 森林病虫害防治自测练习试题与答案
- GB/T 3728-1991工业乙酸乙酯
- GB/T 34949-2017实时数据库C语言接口规范
- GB/T 3452.1-2005液压气动用O形橡胶密封圈第1部分:尺寸系列及公差
- GB/T 23641-2018电气用纤维增强不饱和聚酯模塑料(SMC/BMC)
- 2023年国际焊接工程师考试IWE结构试题
- 精华版-赵武灵王胡服骑射课件
- 《高等教育心理学》《高等教育学》样题
- 高等学校英语应用能力考试〔B级〕真题及答案
- 高三(5)高考冲刺家长会课件
评论
0/150
提交评论