2024届四川省成都市第二十三中学八上数学期末综合测试模拟试题含解析_第1页
2024届四川省成都市第二十三中学八上数学期末综合测试模拟试题含解析_第2页
2024届四川省成都市第二十三中学八上数学期末综合测试模拟试题含解析_第3页
2024届四川省成都市第二十三中学八上数学期末综合测试模拟试题含解析_第4页
2024届四川省成都市第二十三中学八上数学期末综合测试模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省成都市第二十三中学八上数学期末综合测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D,给出下列结论:①AF=AC;②DF=CF;③∠AFC=∠C;④∠BFD=∠CAF,其中正确的结论个数有.()A.4个 B.3个 C.2个 D.1个2.下列命题中,真命题的个数是()①若,则;②的平方根是-5;③若,则;④所有实数都可以用数轴上的点表示.A.1个 B.2个 C.3个 D.4个3.下列计算正确的是()A. B. C. D.4.如图,在△ABC和△DEF中,AB=DE,∠A=∠D,添加一个条件不能判定这两个三角形全等的是()A.AC=DF B.∠B=∠E C.BC=EF D.∠C=∠F5.如图,分别以Rt△ABC的直角边AC、BC为边,在Rt△ABC外作两个等边三角形△ACE和△BCF,连接BE、AF分别交AC、BC边于H、D两点.下列结论:①AF=BE;②∠AFC=∠EBC;③∠FAE=90°;④BD=FD,其中正确结论的个数是()A.4个 B.3个 C.2个 D.1个6.如图,点D、E在△ABC的边BC上,△ABD≌△ACE,下列结论不一定成立的是()A. B. C. D.7.已知P1(-3,y1),P2(2,y2)是一次函数y=2x+1的图象上的两个点,则y1,y2的大小关系是()A.y1>y2 B.y1<y2 C.y1=y2 D.不能确定8.如图,BD是△ABC的角平分线,AE⊥BD,垂足为F,若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35° B.40° C.45° D.50°9.已知函数的部分函数值如下表所示,则该函数的图象不经过()…-2-101……0369…A.第一象限 B.第二象限 C.第三象限 D.第四象限10.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A. B. C. D.11.如图,△ABE≌△ACD,∠1=∠2,∠B=∠C,下列等式不一定正确的是()A.AB=AC B.∠BAD=∠CAE C.BE=CD D.AD=DE12.检验x=-2是下列哪个方程的解()A. B. C. D.二、填空题(每题4分,共24分)13.在平面直角坐标系中,的顶点B在原点O,直角边BC,在x轴的正半轴上,,点A的坐标为,点D是BC上一个动点(不与B,C重合),过点D作交AB边于点E,将沿直线DE翻折,点B落在x轴上的F处.(1)的度数是_____________;(2)当为直角三角形时,点E的坐标是________________.14.如图,中,,将沿翻折后,点落在边上的点处.如果,那么的度数为_________.15.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.16.若边形的每个外角均为,则的值是________.17.的平方根是____.18.若关于、的二元一次方程组,则的算术平方根为_________.三、解答题(共78分)19.(8分)如图,△ABC三个顶点的坐标分别为A(3,4),B(1,2),C(5,1),(1)请画出△ABC关于y轴对称的图形△A1B1C1,(2)△A1B1C1三个顶点坐标分别为A1,B1,C120.(8分)(1)如图是用4个全等的长方形拼成的一个“回形”正方形,图中阴影部分面积用2种方法表示可得一个等式,这个等式为______.(2)若,,求的值.21.(8分)如图,在平面直角坐标系中,点的坐标是,动点从原点O出发,沿着轴正方向移动,以为斜边在第一象限内作等腰直角三角形,设动点的坐标为.(1)当时,点的坐标是;当时,点的坐标是;(2)求出点的坐标(用含的代数式表示);(3)已知点的坐标为,连接、,过点作轴于点,求当为何值时,当与全等.22.(10分)一辆汽车开往距离出发地200km的目的地,出发后第1小时内按原计划的速度匀速行驶,1小时后以原来速度的1.5倍匀速行驶,并比原计划提前30分钟到达目的地,求前1小时的行驶速度.23.(10分)如图,在四边形中,,点E为AB上一点,且DE平分平分求证:.24.(10分)(模型建立)(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CA=CB,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△CDA≌△BEC.(模型运用)(2)如图2,直线l1:y=x+4与坐标轴交于点A、B,将直线l1绕点A逆时针旋转90°至直线l2,求直线l2的函数表达式.(模型迁移)如图3,直线l经过坐标原点O,且与x轴正半轴的夹角为30°,点A在直线l上,点P为x轴上一动点,连接AP,将线段AP绕点P顺时针旋转30°得到BP,过点B的直线BC交x轴于点C,∠OCB=30°,点B到x轴的距离为2,求点P的坐标.25.(12分)一次函数的图象经过点和两点.求出该一次函数的表达式;画出该一次函数的图象(不写做法);判断点是否在这个函数的图象上;求出该函数图象与坐标轴围成的三角形面积.26.在清江河污水网管改造建设中,需要确保在汛期来临前将建设过程中产生的渣土清运完毕,每天至少需要清运渣土12720m3,施工方准备每天租用大、小两种运输车共80辆.已知每辆大车每天运送渣土200m3,每辆小车每天运送渣土120m3,大、小车每天每辆租车费用分别为1200元,900元,且要求每天租车的总费用不超过85300元.(1)施工方共有多少种租车方案?(2)哪种租车方案费用最低,最低费用是多少?

参考答案一、选择题(每题4分,共48分)1、B【分析】先根据已知条件证明△AEF≌△ABC,从中找出对应角或对应边.然后根据角之间的关系找相似,即可解答.【题目详解】解:在△ABC与△AEF中,,∴△AEF≌△ABC,∴AF=AC,∴∠AFC=∠C;由∠B=∠E,∠ADE=∠FDB,可知:△ADE∽△FDB;∵∠EAF=∠BAC,∴∠EAD=∠CAF,由△ADE∽△FD,B可得∠EAD=∠BFD,∴∠BFD=∠CAF.综上可知:②③④正确.故选:B.【题目点拨】本题主要考查了全等三角形的判定与性质,相似三角形的判定和性质,熟练掌握全等三角形的判定与性质是解决问题的关键.2、B【分析】根据各个选项中的说法可以判断是否为真命题,从而可以解答本题.【题目详解】①若,则,真命题;②的平方根是,假命题;③若,则,假命题;④所有实数都可以用数轴上的点表示,真命题.故答案为:B.【题目点拨】本题考查了真命题的定义以及判断,根据各个选项中的说法可以判断是否为真命题是解题的关键.3、D【分析】根据合并同类项、同底数幂的乘除运算可进行排除选项.【题目详解】A、,故错误;B、,故错误;C、,故错误;D、,故正确;故选D.【题目点拨】本题主要考查合并同类项及同底数幂的乘除运算,熟练掌握合并同类项及同底数幂的乘除运算是解题的关键.4、C【分析】根据三角形全等的判定定理等知识点进行选择判断.【题目详解】A、添加AC=DF,可利用三角形全等的判定定理判定△ABC≌△DEF,故此选项不合题意;B、添加∠B=∠E,可利用三角形全等的判定定理判定△ABC≌△DEF,故此选项不合题意;C、添加BC=EF,不能判定△ABC≌△DEF,故此选项符合题意;D、添加∠C=∠F,可利用三角形全等的判定定理判定△ABC≌△DEF,故此选项不合题意;故选C.【题目点拨】本题主要考查你对三角形全等的判定等考点的理解.5、C【分析】由等边三角形的性质得出BC=CF,CE=AC,∠BCF=∠ACE=∠CFB=∠CBF=∠CAE=60°,∠ACB=90°,易证∠BCE=∠FCA=150°,由SAS证得△BCE≌△FCA,得出AF=BE,∠AFC=∠EBC,由∠FCA=150°,得出∠FAC<30°,则∠FAE=∠FAC+∠CAE<90°,由∠BFD<∠BFC,得出∠BFD<∠CBF,则DF>BD,即可得出结果.【题目详解】∵△ACE和△BCF是等边三角形,∴BC=CF,CE=AC,∠BCF=∠ACE=∠CFB=∠CBF=∠CAE=60°,∠ACB=90°,∴∠BCE=90°+60°=150°,∠FCA=60°+90°=150°,∴∠BCE=∠FCA.在△BCE和△FCA中,∵,∴△BCE≌△FCA(SAS),∴AF=BE,∠AFC=∠EBC,故①、②正确;∵∠FCA=60°+90°=150°,∴∠FAC<30°.∵∠CAE=60°,∴∠FAE=∠FAC+∠CAE<90°,故③错误;∵∠BFD<∠BFC,∴∠BFD<∠CBF,∴DF>BD,故④错误.故选:C.【题目点拨】本题考查了全等三角形的判定与性质、等边三角形的性质、三角形内角和定理、三角形三边关系等知识;熟练掌握等边三角形的性质,证明三角形全等是解题的关键.6、A【分析】根据全等三角形的对应边相等、对应角相等逐一判断即可.【题目详解】∵△ABD≌△ACE,

∴BD=CE,

∴BE=CD,故B成立,不符合题意;

∠ADB=∠AEC,

∴∠ADE=∠AED,故C成立,不符合题意;

∠BAD=∠CAE,

∴∠BAE=∠CAD,故D成立,不符合题意;

AC不一定等于CD,故A不成立,符合题意.

故选:A.【题目点拨】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.7、B【分析】先根据一次函数y=2x+1中k=2判断出函数的增减性,再根据-3<2进行解答即可.【题目详解】∵一次函数y=2x+1中k=2>0,∴此函数是增函数,∵−3<2,∴y1<y2.故选B.【题目点拨】本题考查了一次函数的知识点,解题的关键是熟练的掌握一次函数的性质与其图象上点的坐标特征.8、C【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,推出AB=BE,根据等腰三角形的性质得到AF=EF,求得AD=ED,得到∠DAF=∠DEF,根据三角形的外角的性质即可得到结论.【题目详解】∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,∴∠BAF=∠BEF=90°-17.5°,∴AB=BE,AE⊥BD∴BD是AE的垂直平分线,∴AD=ED,∴∠DAF=∠DEF,∵∠BAC=180°-∠ABC-∠C=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°-50°=45°,故选C.【题目点拨】本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.9、D【解题分析】根据点的坐标,利用待定系数法可求出一次函数解析式,再利用一次函数图象与系数的关系可得出一次函数y=3x+1的图象经过第一、二、三象限,此题得解.【题目详解】解:将(-2,0),(-1,3)代入y=kx+b,得:,

解得:,

∴一次函数的解析式为y=3x+1.

∵3>0,1>0,

∴一次函数y=3x+1的图象经过第一、二、三象限.

故选:D.【题目点拨】本题考查了待定系数法求一次函数解析式以及一次函数图象与系数的关系,根据点的坐标,利用待定系数法求出一次函数解析式是解题的关键.10、B【题目详解】由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.故选B.考点:作图—复杂作图11、D【分析】由全等三角形的性质可求解.【题目详解】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,

∴AB=AC,AD=AE,BE=CD,∠BAE=∠CAD,∴∠BAD=∠CAE

故选D.【题目点拨】本题考查了全等三角形的性质,灵活运用全等三角形的性质是本题的关键.12、B【分析】把x=−2代入各选项中的方程进行一一验证即可.【题目详解】解:A、当x=−2时,左边=,右边=,左边≠右边,所以x=−2不是该方程的解.故本选项错误;B、当x=−2时,左边==右边,所以x=−2是该方程的解.故本选项正确;C、当x=−2时,左边=≠右边,所以x=−2不是该方程的解.故本选项错误;D、当x=−2时,方程的左边的分母等于零,故本选项错误;故选:B.【题目点拨】本题考查了分式方程的解,注意分式的分母不能等于零.二、填空题(每题4分,共24分)13、30°(1,)或(2,)【分析】(1)根据∠ACB=90°以及点A的坐标,得到AC和BC的长,再利用特殊角的三角函数值求解即可;(2)根据直角三角形的定义可分三种情况考虑:①当∠AEF=90°时,②当∠AEF=90°时,③当∠EAF=90°时,三种情况分别求解.【题目详解】解:(1)∵∠ACB=90°,点A的坐标为,∴AC=,BC=3,∴tan∠ABC==,∴∠ABC=30°,故答案为:30°;(2)△AEF为直角三角形分三种情况:①当∠AEF=90°时,

∵∠OED=∠FED,且∠OED+∠FED+∠AEF=180°,

∴∠OED=45°.

∵∠ACB=90°,点A的坐标为,∴tan∠ABC=,∠ABC=30°.

∵ED⊥x轴,

∴∠OED=90°-∠ABC=60°.

45°≠60°,此种情况不可能出现;②当∠AFE=90°时,

∵∠OED=∠FED=60°,

∴∠AEF=60°,

∵∠AFE=90°,

∴∠EAF=90°-∠AEF=30°.

∵∠BAC=90°-∠ABC=60°,

∴∠FAC=∠BAC-∠EAF=60°-30°=30°.

∵AC=,∴CF=AC•tan∠FAC=1,

∴OF=OC-FC=3-1=2,∴OD=1,∴DE=tan∠ABC×OD=,∴点E的坐标为(1,);③当∠EAF=90°时,

∵∠BAC=60°,

∴∠CAF=∠EAF-∠EAC=90°-60°=30°,

∵AC=,∴CF=AC•tan∠FAC=1,

∴OF=OC+CF=3+1=4,∴OD=2,∴DE=tan∠ABC×OD=,∴点E的坐标为(2,);综上知:若△AEF为直角三角形.点E的坐标为(1,)或(2,).故答案为:(1,)或(2,).【题目点拨】本题考查了一次函数图象与几何变换、角的计算以及解直角三角形,解题的关键是根据角的计算以及解直角三角形找出CF的长度.本题属于中档题,难度不大,但在解决该类题型时,部分同学往往会落掉2种情况,因此在平常教学中应多加对学生引导,培养他们考虑问题的全面性.14、70°【分析】首先由折叠的性质,得出∠A=∠DA′E,∠ADE=∠A′DE,∠AED=∠A′ED,然后根据,得出∠AED=∠A′ED=55°,再由三角形内角和定理即可得解.【题目详解】由已知,得∠A=∠DA′E,∠ADE=∠A′DE,∠AED=∠A′ED∵∴∠AED=∠A′ED=(180°-∠A′EC)=(180°-70°)=55°又∵∴∠ADE=∠A′DE=180°-∠A-∠AED=180°-55°-55°=70°故答案为70°.【题目点拨】此题主要考查利用三角形翻折的性质求角的度数,熟练掌握,即可解题.15、50°.【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可:【题目详解】∵MN是AB的垂直平分线,∴AD="BD."∴∠A=∠ABD.∵∠DBC=15°,∴∠ABC=∠A+15°.∵AB=AC,∴∠C=∠ABC=∠A+15°.∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为50°.16、【解题分析】用360°除以每一个外角的度数求出边数即可【题目详解】360°÷120°=3故答案为3【题目点拨】此题考查多边形的内角与外角,难度不大17、±3【题目详解】∵=9,∴9的平方根是.故答案为3.18、2【分析】首先利用消元法解二元一次方程组,然后即可得出的算术平方根.【题目详解】①+②,得代入①,得∴∴其算术平方根为2,故答案为2.【题目点拨】此题主要考查二元一次方程组以及算术平方根的求解,熟练掌握,即可解题.三、解答题(共78分)19、(1)见解析;(2)【分析】(1)根据题意,找出对应的对称坐标,即可画出;(2)由对称图形可知,其对应坐标.【题目详解】(1)如图所示:(2)由对称性,得A1,B1,C1.【题目点拨】此题主要考查轴对称图形的画法与坐标求解,熟练掌握,即可解题.20、(1);(2).【分析】(1)我们通过观察可知阴影部分面积为4ab,他是由大正方形的面积减去中间小正方形的面积得到的,从而得出等式;

(2)可利用上题得出的结论求值.【题目详解】(1)观察图形可知阴影部分的面积是边长为(a+b)的正方形面积减去边长为(a-b)的正方形面积,也是4个长是a宽是b的长方形的面积,所以.(2)根据(1)的结论可得:【题目点拨】本题是根据图形列等式,并利用等式来求值,利用等式时要弄清那个式子是等式中的a,那个式子是b.21、(1)(2,2);(,);(2)P(,);(3).【分析】(1)当时,三角形AOB为等腰直角三角形,所以四边形OAPB为正方形,直接写出结果;当时,作PN⊥y轴于N,作PM⊥x轴与M,求出△BNP≌△AMP,即可得到ON+OM=OB-BN+OA+AM=OB+OA,即可求出;(2)作PE⊥y轴于E,PF⊥x轴于F,求出△BEP≌△AFP,即可得到OE+OF=OB+BE+OA+AF=OB+OA,即可求出;(3)根据已知求出BC值,根据上问得到OQ=,△PQB≌△PCB,BQ=BC,因为OQ=BQ+OB,即可求出t.【题目详解】(1)当时,三角形AOB为等腰直角三角形如图所以四边形OAPB为正方形,所以P(2,2)当时,如图作PN⊥y轴于N,作PM⊥x轴与M∴四边形OMPN为矩形∵∠BPN+∠NPA=∠APM+∠NPA=90°∴∠BPN=∠APM∵∠BNP=∠AMP∴△BNP≌△AMP∴PN=PMBN=AM∴四边形OMPN为正方形,OM=ON=PN=PM∴ON+OM=OB-BN+OA+AM=OB+OA=2+1=3∴OM=ON=PN=PM=∴P(,)(2)如图作PE⊥y轴于E,PF⊥x轴于F,则四边形OEPF为矩形∵∠BPE+∠BPF=∠APF+∠BPF=90°∴∠BPE=∠APF∵∠BEP=∠AFP∴△BEP≌△AFP∴PE=PFBE=AF∴四边形OEPF为正方形,OE=OF=PE=PF∴OE+OF=OB+BE+OA+AF=OB+OA=2+t∴OE=OF=PE=PF=∴P(,);(3)根据题意作PQ⊥y轴于Q,作PG⊥x轴与G∵B(0,2)C(1,1)∴BC=由上问可知P(,),OQ=∵△PQB≌△PCB∴BC=QB=∴OQ=BQ+OB=+2=解得t=.【题目点拨】此题主要考查了正方形的性质、全等三角形、直角坐标系等概念,关键是作出正方形求出相应的全等三角形.22、原计划的行驶速度为80千米/时.【分析】首先设原计划的行驶速度为x千米/时,根据题意可得等量关系:原计划所用时间实际所用时间=30分钟,根据等量关系列出方程,再解即可.【题目详解】解:设原计划的行驶速度为x千米/时,由题意得:,解得:,经检验:x=80是原分式方程的解.答:原计划的行驶速度为80千米/时.【题目点拨】此题主要考查了分式方程的应用,关键是正确理解题意,表示出原计划所用时间和实际所用时间,根据时间关系列出分式方程.23、见解析【分析】延长CE交DA的延长线于点F,证明即可.【题目详解】证明:延长CE交DA的延长线于点F,∵CE平分,,,,,,平分,,,∴,.【题目点拨】本题考查了全等三角形的判定和性质,掌握判定方法是解题关键.24、(1)见解析;(2);(3)点P坐标为(4,0)或(﹣4,0)【分析】(1)由“AAS”可证△CDA≌△BEC;(2)如图2,在l2上取D点,使AD=AB,过D点作DE⊥OA,垂足为E,由(1)可知△BOA≌△AED,可得DE=OA=3,AE=OB=4,可求点D坐标,由待定系数法可求解析式;(3)分两种情况讨论,通过证明△OAP≌△CPB,可得OP=BC=4,即可求点P坐标.【题目详解】(1)证明:∵AD⊥DE,BE⊥DE,∴∠D=∠E=90°,∴∠BCE+∠CBE=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∴∠ACD=∠CBE,又CA=BC,∠D=∠E=90°∴△CDA≌△BEC(AAS)(2)如图2,在l2上取D点,使AD=AB,过D点作DE⊥OA,垂足为E∵直线y=x+4与坐标轴交于点A、B,∴A(﹣3,0),B(0,4),∴OA=3,OB=4,由(1)得△BOA≌△AED,∴DE=OA=3,AE=OB=4,∴OE=7,∴D(﹣7,3)设l2的解析式为y=kx+b,得解得∴直线l2的函数表达式为:(3)若点P在x轴正半轴,如图3,过点B作BE⊥OC,∵BE=2,∠BCO=30°,BE⊥OC∴BC=4,∵将线段AP绕点P顺时针旋转30°得到BP,∴AP=BP,∠APB=30°,∵∠APC=∠AOC+∠OAP=∠APB+∠BPC,∴∠OAP=∠BPC,且∠OAC=∠PCB=30°,AP=BP,∴△OAP≌△CPB(AAS)∴OP=BC=4,∴点P(4,0)若点P在x轴负半轴,如图4,过点B作BE⊥OC,∵BE=2,∠BCO=30°,BE⊥OC∴BC=4,∵将线段AP绕点P顺时针旋

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论