数学(七上)第二章 整式加减 作业设计_第1页
数学(七上)第二章 整式加减 作业设计_第2页
数学(七上)第二章 整式加减 作业设计_第3页
数学(七上)第二章 整式加减 作业设计_第4页
数学(七上)第二章 整式加减 作业设计_第5页
已阅读5页,还剩47页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

沪科版七年级上册第二章 整式加减单 元 作 业淮北市相山区钟楼中学鲁 彦 赵承承张 振 祖琪珺朱格俊 李大兵(淮北市西园中学)目录一、单元信息………………………1二、单元分析(一)课标要求……………………1(二)教材析………………………2(三)学情析………………………2三、单元学习与作业标……………3四、单元作业设计路………………6五、课时作业第2章整式加减第一课时用字母表示数…………9第二课时代数式…………………13第三课时代数式的意义与规律探究……………17第四课时整式……………………21第五课时代数式的值……………25第六课时合并同类项……………29第七课时去括号…………………33第八课时添括号…………………37第九课时整式加减………………41六、单元质量检测作业……………45PAGEPAGE1一、单元信息

第二章整式加减基本信息学科年级学期教材版本单元名称数学七年级第一学期沪科版整式加减单元组织方式☑自然单元 □重组单元课时信息序号课时名称对应教材内容1用字母表示数第2.1(P56-57)2代数式第2.1(P58-59)3代数式的意义与规律探究第2.1(P60-62)4整式第2.1(P63-64)5代数式的值第2.1(P65-66)6合并同类项第2.2(P69-70)7去括号第2.2(P71-72)8添括号第2.2(P73-74)9整式加减第2.2(P74-75)二、单元分析(一)课标要求2022版新课标对本单元提出教学要求:1、借助现实情境了解代数式,进一步理解用字母表示数的意义。2、能分析具体问题中的简单数量关系,并用代数式表示;能根据特定的问题查阅资料,找到所需的公式。3、会把具体数代入代数式进行计算。的乘法)。新课标在“知识技能”方面指出:在“数学思考”方面指出:通过用代数式等表述数量关系的过程,体会建模思想,建立符号意识;体会通过合情推理探索数学结论,运用演绎推理加以证明的过程,发展推理能力;能独立思考,体会数学的基本思想和思维方式。解读新课标对本单元的要求“一元一次方程”直接基础,也是以后学习整式的乘除、分式和根式运算、方程以及函数等知识的基础。由于整式中的字母可以表示任意有理数,因此整式的加减运算可以类比和应用有理数的运算与加法、乘法的运算律来学习,进一步体会“数与式”运算的相通性。整式的加减法运算的实质是“合并同类项”,需要应用到去括号、加法和乘法的运算律等相关知识。(二)教材分析1.知识网络2.内容分析《整式加减》是沪科版数学七年级上册第二章内容,是在学生学习了有理数之后,由数向式的过渡。本章主要内容是代数式,求代数式的值,整式的有关概念,与整式的加、减运算。这些内容既是对有理数的概括与抽象,又是后继学习能更一般地表示数量关系,因而本章学习程度直接影响学生运用方程、不等式建模解决实际应用问题能力。在内容安排上,引入代数式及其求值后,对所列出的代数式进行分类,引出律归纳总结出去括号、添括号的法则。本教科书选取这个背景材料,从本质上突出了合并同类项与去(添)括号的根本目的。本章的核心是在理解与掌握单项式、多项式、同类项及合并同类项方法、去括号的规律等概念与法则的基础上,学习整式的加减。通过整式加减运算律的探究,让学生体会“数式通性”,提高其数学抽象的能力及运算能力。(三)学情分析数、式,乃至今后的形,引发了学生学法的变化,而一部分学生仍停滞在死记硬背、机械模仿中,这种“原地踏步走”的方式使他们陷入学习困境.。由于诸多元素的影有的学生自暴自弃等等,不同的个性态度导致了每个人在数学学习上的不同结果。识上的一次飞跃,但并不能透彻理解这句话的真正意义,一些学生会片面的认为:用成为具体数据的一种延伸,阻碍了学生把式子可以表示变化的己知量的观念的生成。的思想方法,在数的运算基础之上探求整式加减运算的法则与规律成为教学的难点。方法来研究整式的加减运算法则。从而使学生进一步从整体上理解《整式的加减》核心知识间的纵横联系和层次结构,连贯性和数学思想方法的一致性,去括号法则是本章的难点,它是整式加减的基础,时引导学生与数的运算作比较,考察在数的运算中,遇到括号时是怎样去掉括号的,可得心应手。三、单元学习与作业目标(一)单元学习1.单元学习目标:(1)、在具体的情境中了解单项式、多项式、整式等概念,弄清它们之间的区别与联系。(2)、理解同类项概念,掌握合并同类项和去添括号法则,能正确地进行同类项的合并和去括号。在准确判断、正确合并同类项的基础上,进行整式的加减运算。并同类项、去括号的依据是分配律;理解数的运算律和运算律性质在整式的加减运算中仍然成立。(4)、能分析实际问题中的数量关系,并列出格式表示。体会用字母表示数后,从算术到代数的进步。过渡到整式的加减的过程,培养学生由特殊到一般的思维;体会整式的加减实质上就是去括号,合并同类项,结果总是比原来简洁,体现了数学的简洁美。2.课时目标第一课时 用字母表示数目标:(1)、理解用字母表示数的意义,了解代数式,能解释一些简单代数式的实际背景或几何意义。(2)、经历把实际问题用含有字母的式子进行表达的抽象过程,培养学生用字母表示数的意识和兴趣。培养学生从特殊到一般的抽象逻辑思维过程。(4)、本课时重点是体会字母表示数和代数式表示规律的含义。难点是探索一般规律并用代数式表示规律。第二课时 代数式目标:(1)、学生掌握分析简单数量关系的能力,并用代数式表示;(2)、能进一步解释一些简单代数式的实际背景或几何意义;(3)、初步学会运用数学思维去观察、分析现实社会,认识数学与人类生活的密联和密切关系;4.本课时重点是掌握代数式的概念,给出数量关系能列出代数式并简单求值。活中的各种量之间的关系,解决实际问题。第三课时 代数式的意义与规律探究目标:(1)、通过创设问题的情景探索,让学生亲身体验代数式的应用价值和意义,提高学生的数学素养--懂得数学的价值。(2)、理解代数式的含义,经历从数到用字母表示数的认知过程,加深关于使用字母思考必要性的理解。(3)、使学生有机会在现实背景中,亲历观察、想象、推理、交流等活动,通过数学的途径探索规律、建立模型,实现现再创造。第四课时 整式目标:(1)、理解单项式、单项式系数、次数及多项式的概念(2)、能够迅速而准确的确定一个单项式的系数和次数或一个多项式的项数和次数3.能够用单项式或者多项式表示具体问题中的数量关系第五课时 代数式的值目标:(1)、会求代数式的值,感受代数式求值可以理解成一个转换过程或某种算法。(2)、能解释代数式值的实际意义。(3)、根据代数式求值推断代数式所反映的规律。第六课时 合并同类项目标:(1)、了解同类项的概念,在具体情景中认识同类项。(2)、既能借助图形的直观又能运用运算律,从不同的角度来探究合并同类项法则;从而真正理解合并同类项方法。(3)、能进行同类项的合并:在具体实例中感受数形结合,分类等数学思想,体现数学灵魂之一——化繁为简4.掌握用规范的格式解决化简求值题。第七课时 去括号目标:(1)、掌握去括号法则,并能熟练运用法则进行计算(2)、通过去括号法则的应用,培养学生观察,推理,归纳总结的能力(3)、经历去括号法则的推导过程,体验“数式通性”的数学研究方法.(4)、通过参与去括号法则的数学探究活动,培养学生主动探究、合作交流的意识,严谨治学的学习态度第八课时 添括号目标:(1)、掌握添括号法则的推导,会综合运用添括号法则解决问题(2)、在具体情境中体会添括号的必要性,学习逆向思维;提高学生的合作交流意识和创新精神。(3)、经历添括号法则的探究,培养学生观察思考和归纳总结能力,让学生接受“矛盾的对立双方能在一定条件下互相转化”的辩证思想和观念。第九课时 整式加减目标:(1)、掌握整式加减的运算法则,并能熟线陈地进行整式的加减运算。(2)、能够将多项式按照某一个字母升幂(降幂)排列。(3)、运能用所学的知识解决所学问题。(二)作业目标第一课时 用字母表示数作业目标:(1)掌握用字母来表示数,通过字母的使用把一些复杂的数量关系更加简明地表示出来。(2)掌握用字母表示图形的周长、面积和体积等公式,将新知与旧识联系起来,会用数学的思维思考世界。(3)联系生活实际,运用字母表示生活实际中的数量关系,体会数学知识在日常生活中的广泛应用,会用数学的语言表达世界。第二课时 代数式作业目标:(2)、探索日常生活中的数学问题,能找出题目中的数量关系,并熟练运用代数式表示它,提高学生解决实际问题的能力;(3)、了解复杂图形的面积计算,能从生活实物中抽象出数字模型,并用平面图知识解决复杂图形的面积求法;(4)、培养学生的数形结合思想,学会从图中找出数量关系,由形到数,培养学生的观察能力、空间想象能力和抽象概括能力,培养符号感。第三课时 代数式的意义与规律探究作业目标:表示数量关系的简洁性。(2)、能解释一些简单代数式的实际背景或几何意义。(3)、能根据具体的、实际的问题来观察探索数量变化规律,并能用代数式表示出来,使学生学会学习、学会思考。第四课时 整式作业目标:第五课时 代数式的值作业目标:(1)、使学生掌握代数式的值的概念,会求代数式的值;(2)、培养学生准确地运算能力,并适当地渗透对应的思想.(3)、要求学生会用代数式知识来解决有关解决实际问题,提高学生应用所学知识解决问题能力。第六课时 合并同类项:通过对合并同类项这节课作业练习,可以达到以下目标:(1)、在理解同类项的概念基础上,能熟练辨别出同类项,还能举出同类项的例子.(2)、能熟练利用合并同类项的法则进行计算;掌握其基本的合并同类项计算方法,培养学生的观察和运算能力。(3)、能综合利用代数式、合并同类项等知识解决有关问题,感受知识之间内在的联系,培养学生数学素养。第七课时 去括号作业目标:(1)、认识去括号法则,通过作业练习加深对去括号法则的理解。(2)、掌握去括号时符号的变化规律,能熟练、准确地应用去括号法则,并能进行整式的化简,体会数学简洁美。培养学生运算能力和思维严谨性。(3)、经历去括号法则的应用过程,加深对新知的理解,提升解决问题能力和归纳总结能力,发展学生数学思维。第八课时 添括号作业目标:(1)、认识添括号法则,通过作业练习熟练运用添括号法则解决问题(2)、通过添括号作业练习,学会根据数学式子的结构特点,适当恒等变形和灵活运用公式,培养学生综合运用知识的能力(3)、进一步熟悉乘法公式的合理利用。在多项式与多项式的乘法中适当添括号达到应用公式的目的。(4)、感悟知识间的相互联系,体会知识的灵活运用,鼓励学生算法多样化,培养学生多方位思考问题的习惯第九课时 整式加减作业目标:(1)、掌握整式加减的一般步骤,熟练进行整式运算;并能综合应用去括号、添解。(2)、能够将多项式按照某一个字母升幂(降幂)排列。(3)、能用整式加减运算解决有关实际问题;能在实际背景中体会进行整式加减的必要性。四、单元作业设计思路量础础规基础性基础性作业作业设计体系发展性作业实践性作业识固合合用究究新能力能力提升学科学科整合学学读 数学思考 学践1、分层设计作业,使不同的学生在数学上都得到不同的发展心理特征、学习动机、兴趣、习惯、接受能力和学习成绩等方面的情况和教材内容,他们综合数学素核心养的能力。2.作业设计要与实际生活相联系,感受数学的价值和魅力《新课标》指出:数学课程要培养学生的核心素养主要包括一下三个面:(1)到生活中,才会显示其价值和魅力,人人学有价值的数学学,人人学有用的数学。3、设计开放性作业、锻炼学生思维灵活性和深刻性生主体性地学习需要,有效挖掘学生潜能,培养学生的个性,激发学习热情。发展学生思维灵活性和深刻性,促使学生获得全面发展。4、改变和重组习题,发挥习题的教学功能去完成,从而有效地帮助学生巩固知识、深化认识和发展能力。5、作业评价开放性,培养学生创新能力改变这种作业评价方式,大胆地尝试新的作业评价模式——那就是开放的作业评价,积极地参与,作业评价的开放,焕发了师生教与学的活力,学生成为评价的主人。6、数学阅读以适应时代的变化。第一课时 用字母表示数作业1(基础性作业)1.作业内容(1)用代数式表示下列关系:①a与b的平方和 ②比a与6的和的2倍大-2的数③a与b的和的平方 ④a的平方与b的平方的4倍的差(2)一个两位数,个位数字为a,十位数字比个位数字小1,则这个两位数可以表示为( )A.11a+1 B.11a-1B.11a+10 D.11a-10(3)一个圆锥的底面半径为rm,高为hm,那么它的体积为 .a,b,c.2.时间要求要求学生集中注意力,在6分钟以内完成基础性作业部分的内容,确保做题的效率和完成的质量。3.评价设计作业评价表ABC答题的准确性ABC答题的规范性ABC解法的创新性ABCABC4.作业分析与设计意图作业第(1)题要求学生学会用字母来表示数,通过字母的使用把一些复杂的数顾和复习,又为这节课的新知学习打下了基础。第(2)题讨论如何用字母来表示一PAGEPAGE10对用字母表示数的理解。第(3)题,借助圆锥的体积计算公式,回顾了几何学的知子所反映的规律具有普遍意义,知识记忆更加牢固和清晰。第(4)题考查用字母表学生对课堂知识的掌握情况,这部分作业,要求学生全部掌握。作业2(发展性作业)1.作业内容(1)若用n表示一个整数,则下列能表示奇数的是( )n1

n1B.C.2n

D.2n3(2)某商品售价为x元,进价为400元,在商场开展的促销活动中,该商品按8折销售获利( )A.(8x-400)元 B.(400×8-x)元C. (0.8x-400)元 D.(400×0.8-x)元(3)数学兴趣小组要制作长方形和梯形两种不同形状的卡片,尺寸如图所示:5(单位:cm) 54①长方形卡片的面积是8acm2;若梯形卡片的下底是上底的3倍,则梯形卡片的面积是 cm2.②在①的条件下,做5张长方形卡片比做3张梯形卡片多用料多少平方厘米?(4)(选做题)如图的网格线是由边长为1的小正方形格子组成的,小正方形3个格点的四边形的面积与该四边形边上的格点数有某种关系,请你观察图中的4个格点四边形.设内部含有3个格点的四边形的面积为S,其各边上格点的个数之和为m,则S与m的关系为( )Sm

Sm32

S1m22

S1m322.时间要求力的学生通过训练,熟能生巧,拓展学生思路和知识面。要求学生在10分钟之内认真思考,完成作业。3.评价设计作业评价表ABC答题的准确性ABC答题的规范性ABC解法的创新性ABCABC4.作业分析与设计意图作业第(1)题要求学生学会用字母来表示数,通过字母的使用把一些复杂的数量关系更加简明地表示出来。用字母来表示奇数和偶数的属于学生必须掌握的题目,为以后的数量知识学习奠定了基础。第(2)题从实际生活中的商品获利问题入手,浓厚兴趣。第(3)题考查学生用字母表示图形的周长和面积公式,是对旧知的巩固的计算也成为了一个易错点。要求学生认真,细心,缜密。第(4)是一道选做题,习的浓厚兴趣。作业3(实践性作业)1.作业内容课外拓展阅读走近代数学符号之父--韦达1591年,法国数学家韦达第一次在数学研究中系统地使用了字母表示数。韦达这样写起来就方便多了。韦达的“魔法”--在法国和西班牙的战争中,法国人对于西西班牙。可怜西班牙的国王对法国人在战争中的“未卜先知”十分脑火又无法理解,是对代数学的推动,16世纪的法国数学家韦达实现了历史性的突破,他不仅用固定的诞生,因此他被称为“代数学之父”。言,掌握好它对于提高数学表达能力,培养抽象思维十分有益。合作学习与探讨你对字母表示数的理解。2.时间要求(10分钟)3.作业分析与设计意图今天学习数学的探索过程中的大量代数符号和表示方法有了更加智慧的思考和解答。光得以提高。附参考答案:作业1(基础性作业)(1)①ab2

②2(ab)2

③(ab)2

④a24b2(2)D (3)1r2h3

(4)(ab)ca(bc)作业2(发展性作业)(1)D (2)C (3)①C

10a

②10acm2作业1(基础性作业)1.作业内容

第二课时 代数式(1)下列代数式书写规范的是( )mn32xy5

3x

a12(2)今年弟弟10岁,姐姐12岁,经过t年后,姐弟俩年龄之和为( )t)岁

B.t)岁

C.(222t)岁2t)岁a千米/时的速度行驶了3b千米/时的速度行驶了2小时后,到达乙地,则汽车由甲地到乙地的平均速度为 千米/时.(4)如图,正方形ABCG和正方形CDEF的边长分别为a,b,用含a,b的代数式表示阴影部分的面积.2.时间要求要求学生集中注意力,在10分钟以内完成基础性作业部分的内容,确保做题的效率和完成的质量。3.评价设计作业评价表ABC答题的准确性ABC答题的规范性ABC解法的创新性ABCABC4.作业分析与设计意图作业第(1)题为定义题,考查代数式的标准书写格式,要求学生全部掌握,细心分辨和判断,注意区分整式和分式,极易混淆。第(2)题考查年龄问题,从实际趣,激发学习探究的热情。第(3)题考查学生运用数量关系解决应用题的能力。牢牢把握“速度×时间=路程”这个关系式来找出本题的等量关系,从而解决本题。对学生的阅读、思考、理解、计算、应用能力有所锻炼。第(4)题考查阴影部分面积看整体,转化为更加简单的解决办法。作业2(发展性作业)1.作业内容(1)某超市进了一批羽绒服,每件进价为a元,若要获利25%,则每件商品的零售价定为( )25%a元

B.(125%)a元

C.(125%)a元a 元125%(2)如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.①用含m或n的代数式表示拼成矩形的周长;②m7,n分之一圆和四个半圆组成(半径都分别相同),它们的窗户能照进阳光的面积分别是多少?(窗框面积不计)谁的窗户照进阳光的面积大?(4)(选做题)请同学们动手试一试:将一张正方形纸片剪成四个小正方形,得到47个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;…,根据以上操作,若要得到2011个小正方形,则需要操作的次数是( )6692.时间要求

B.670

C.671

D.672力的学生通过训练,熟能生巧,拓展学生思路和知识面。要求学生在10分钟之内认真思考,完成作业。3.评价设计作业评价表ABC答题的准确性ABC答题的规范性ABC解法的创新性ABCABC4.作业分析与设计意图进一步提高学生的数学素养。第(2)题考查用字母表示长方形的周长和面积公式,趣和欲望,培养合作意识和合作能力。第(3)题考查生活中特殊图形的面积计算,让学生能从生活实物中抽象出数字模型,并用平面图知识解决复杂图形的面积求法。知识在生活中的运用,进一步提高学生的学习兴趣。第(4)题这道选做题从生活中后更深的知识学习提供了思考的方向。作业3(实践性作业)1.作业内容神奇的魔法魔术,有传统的中国魔术,也有日本、法国等国的魔术,让人大开眼界,非常过瘾。点,让魔术看起来神乎其神。把这个数乘以但魔术师自己却有非常简单的方式,能够迅速算出观众最初想到的数。下面就来揭秘一下:假设观众随便想的数是x,则魔术师让观众进行的一系列计算可以表示为3x16xy4x16y。魔术师是怎么迅速算出来的呢?他只需要把观众说出的结果除以4xy44假设观众心里想的数是15,乘以3就是45,加上16,再加上15,最后的和就是76,观众把76告诉魔术师。魔术师把76除以4,得到19,再减去4,就得出15了。怎么样,是不是非常简单?下面再说一个类似的魔术:魔术师请两位观众上台当自己的助手,一个助手将1~K的扑克牌随意洗牌,洗抽中的牌的点数乘以2,加上3,再乘以5,减去25,将结果告诉魔术师。魔术师就吗?请同学们动动小脑筋,和你的同桌一起交流吧!2.时间要求(10分钟)3.作业分析与设计意图真正艺术创作及科学发明的灵感源泉。”数学就是这样美妙的存在。当数学与魔术察、思考、发现活动,感受魔术“变与不变的规律”,感受图形与数的结合与代数来。附参考答案::作业1(基础性作业)(1)C (2)C (3)作业2(发展性作业)

3a2b5

(4) 28(1)B (2)①

周长:4m

②(3)方方:abb2; 圆圆:abb2;圆圆的窗户照进阳光的面积大;8 32(4)B第三课时 代数式的意义与规律探究11.作业内容(1)填空:①购买单价为a元的贺年卡n张,需要 元;②女儿今年x岁,妈妈的年龄是女儿的3倍,5年后妈妈的年龄是 岁;(2)下列代数式的意义表示错误的是( )a表示a相反数,y)2表示x、y和的平方,

B.a2b2表示a、b两数的平方差,D.1gt2表示1g与t的积的平方。2 2n2.时间要求(8分钟)3.评价设计作业评价表ABC答题的准确性ABC答题的规范性ABC解法的创新性ABCABC4.作业分析与设计意图1.作业内容;;;;)10019952510019825

100199251001925)7,a2,

a2,a3.2.时间要求(10分钟)3.评价设计

作业评价表标级注ABC性A,。B,。C,,。性A,。B,、。C,。性A,,。B,,。C,,。级B为A;CB;为C。4.作业分析与设计意图32.时间要求(10分钟)3.评价设计作业评价表ABC答题的准确性ABC答题的规范性ABC解法的创新性ABCABC1000倍,即这个六位数是原来三位数的1001倍,而1001=7×11×13,所以这个六位数除以附参考答案:1①an ②3x5D2n4B D 3

10a2

100a310a2PAGEPAGE20(2)71113463.11.作业内容整式ab,3

4x,

mn,2

0.81,

1,0中,单项式共有( y5个

6个2

7个

8个(2)3xy)532

B.33-3 25335a,

2x2y,

1,5,3m2n)x4个

3个

2个

1个x2y2,x,ab3

,10,

6xy1,

1,1m2n,x 7

2x2x5,

2 .xx2}}{ }}2.时间要求(10分钟)3.评价设计作业评价表ABC答题的准确性ABC答题的规范性ABC解法的创新性ABCABC4.作业分析与设计意图1.作业内容2x2yb)b0

b1

b2

b35x24xx33按x.(3)若整式(22b)y3(ay26y2022是关于y的一次二项式,求代数式a26ab3b22.时间要求(8分钟)3.评价设计作业评价表ABC答题的准确性ABC答题的规范性ABC解法的创新性ABCABC4.作业分析与设计意图作业3..a123456n3.评价设计作业评价表ABC答题的准确性ABC答题的规范性ABC解法的创新性ABCABC附参考答案:1CDCx,ab,3

1m2n}7x2y2,6xy{x,ab,3

2x2x51m2n,7

}x2y2,

6xy

2x2x5}1,2 }x xx2A(2) x35x24x3(3)因为此整式(22b)y3(ay26y2022是关于y的一次二项式30即ab1把a6ab3b2得:a26ab3b2(3)26(3)1312918330作业(1) 答案不唯一,如

1xy2

(2)1:3(2) ①1234566a210a214a218a222a226a2②(4n2)a2代数式的值作业1(基础性作业)1.作业内容(1)当x1时,代数式2x25x的值为( )3

5

7

-2(2)已知x2y4y)3

6

9

12(3)若a、b互为相反数,则a2的值为 。(4)当x1,y2时,求下列代数式的值:2①2x2y2

②4x2yxy2.时间要求(10分钟)3.评价设计

作业评价表ABC答题的准确性ABC答题的规范性ABC解法的创新性ABCABC4.作业分析与设计意图作业第(1)题主要考察列代数式求值、有理数的乘方和有理数的混合运算,要求学生细心认真,掌握整体代入的思想,确定最后结果的正负;第(2)题主要考察可解决此题;第(3)题考察学生掌握相反数的知识与代数式值的求法相结合的知识的综合应用。第(4)题是一道稍微复杂的代入求值题,里面涉及了负数,分数的计算,学生极易出错,要求学生能够细心,按照步骤一步步代入求值计算。作业2(发展性作业)1.作业内容(1)已知当x2时,代数式ax3bx2的值为7,则当x2时,代数式ax3bx2的值为 .(2)已知:有理数m所表示的点到点3距离5个单位长度,a、b互为相反数且都不为零,c、d互为倒数.求:2a2b(a)m的值.bx与售价y0.2是包装费):数量x/件1234…售价y/元2.3+0.24.6+0.26.9+0.29.2+0.2…①写出用数量x表示售价y的代数式;②求20件这种商品的售价;③若买这种商品花费了23.2元,问买了多少件?2.时间要求(10分钟)3.评价设计作业评价表ABC答题的准确性ABC答题的规范性ABC解法的创新性ABCA综BC4.作业分析与设计意图作业第(1)题先根据题意可得一个关于的等式,把x2代入后,将代数代入思想等综合知识,是一道能力提升题。作业第(2)题在掌握相反数、倒数、绝(4)题是一道代入求值计算与生活实际相结合的题,从日常生活买商品的实际应用会列代数式,会代入求值计算的基础上,能力提高,解决实际问题。作业3(实践性作业)1.作业内容数学知识阅读

代数式的产生与发展数式。理为中心问题的初等代数。就很不容易说清楚了。比如,如果你认为“代数学”是指解bx+k=0这类用符号表示的方程的技巧。那么,这种“代数式”是在十六世纪才发展起来的。如果我们对代数符号不是要求象现在这样简练,那么,代数学的产生可上溯到更国,用文字来表达的代数问题出现的就更早了。1859年。那年,清代数学家里李善兰和英国人韦列亚力共同翻译了英国人棣么甘所就产生了,比如《九章算术》中就有方程问题。学家们也把主要精力集中在方程的研究上。它的研究方法是高度计算性的。四种运算的算术运算。数、正负分数和零。这是初等代数的又一重要内容,就是数的概念的扩充。数。地说就是n次方程有n个根。1742年12月15日瑞士数学家欧拉曾在一封信中明确地做了陈述,后来另一个数学家德国高斯在1799年给出了严格的证明。代数式概念的形式与发展经历了一个漫长的历史发展过程,13世纪,斐波那契(Fibonacci,L.)就开始采用字母表示运算对象,但尚未使用运算符号,韦达(Viete,F.)于1584-1589年间,引入数学符号系统,使代数成为关于方程的理论,作了改进,用拉丁字母表中前面的字母a,b,c,...表示已知数,用末尾的一些字母x,y,z,...发展并完善了代数式的表示方法。发展的?2.时间要求(10分钟)3.作业分析与设计意图些问题,学会用数学的眼光看世界,用数学知识去分析和解决生活中的实际问题。附参考答案::作业1(基础性作业)C

C

3.-2

4.①92

②-6作业2(发展性作业)(1)-3 (2)-32或8 (3)①y2.3x0.2

②46.2元 ③10件作业1(基础性作业)1.作业内容(1)下列各组式子中,不是同类项的是( )A.ab与ba B.0.2a2b与3ab2C.a2b3c与b3a2c

D.-3和9(2)判断下面合并同类项是否正确,若不正确,请改正:①2a33a25a5()②3a2b5ab()③3x2y3yx20()④5a24a21()(3)合并同类项:①mn7mn3nm

②3a2b4ab245a2b2ab21(4)求值:x23x2x26x2,其中x12.时间要求(10分钟)3.评价设计作业评价表ABC答题的准确性ABC答题的规范性ABC解法的创新性ABCABC4.作业分析与设计意图作业第(1)题考察同类项的概念,判断是不是同类项必须同时具备以下两个条件:①所含字母相同;②相同字母的指数也相同。这两个条件缺一不可,与该项的的理解和运用。作业第(2)题就是在理解掌握同类项的概念基础上进而应用合并同类项的法则去进行计算,会辨析合并的结果正确与否。作业第(3)题考察学生对合作业第(4)题是先合并同类项再求值,是把合并同类项与前面求代数式的值知识一起考查,实现了知识的综合应用。PAGEPAGE30作业2(发展性作业)1.作业内容(1)构建同类项:①3xy2与2x ; ②0.6a2b与 .(2)如果3a2bmn与4amb3的和是一个单项式,则m ,这两个单项式的和为 .(3)日历中同一竖列相邻三个数的和不可能是( )

n .一二三四五六日12345678910111213141516171819202122232425262728293031A. 35 B. 39 C. 51 D. 60(4)求值7a2b6abb23a2b5ab2a2b2b2,其中a1,b1.3x22ymx53nx26x20y的值与字母x的取值无关,求2m2mnn3的值.32.时间要求(10分钟)3.评价设计作业评价表ABC答题的准确性ABC答题的规范性ABC解法的创新性ABCABC4.作业分析与设计意图作业第(1)题也是是一个开放性练习,有半开放到完全开放,让学生主动构建同类项,加深学生对同类项的概念理解和运用。作业第(2)题进一步巩固用代数式在图形中的运用,并能够进行合并同类项,判断日历中同一竖列相邻三个数的和一定是3程和二元一方程组的解法,实现了知识的综合应用。作业第(4)题是先合并同类项现作业层次性,综合应用所学的知识来解决此问题。作业第(5)题提出问题激发学生积极地思考,应用合并同类项法则和解方程求出字母的值,再代入求出代数式的值,实现了知识的综合应用。作业3(实践性作业)数学小阅读:中国数学家苏步青的故事苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫,可他父懂。可是,后来的一堂数学课影响了他一生的道路。那是苏步青上初三时,他就读的浙江省六十中来了一位刚从东京留学归来的教数“为了救亡图存,必须振兴科学。数学是科学的开路先锋,为了发展科学,必须学好数学。”苏步青一生中不知听过多少堂课,但这堂课使他终身难忘。杨老师的课深深地打动了他,给他的思想注入了新的兴奋剂。读书,不是为了摆脱个人困境,而是要拯救中国广大的苦难民众;读书,不是为了个人找出路,而是为中华民族求新生。当天晚上,苏步青辗转反侧,彻夜难眠。在杨老师的影响下,苏步青何练习薄,用毛笔书写,工工整整。中学毕业时,苏步青门门功课都在90分以上。17岁时,苏步青赴日留学,并以第一名的成绩考取东京高等工业学校,在那里他如饥似渴地学习着。为国争光的信念驱动苏步青较早地进入了数学的研究领域,在完成学业的同时,写了30多篇论文,在微分几何方面取得令人瞩目的成果,并于1931年获得理学博士学位。获得博士学位之前,苏步青已在日本帝国大学数学系当讲师,正当日本一个大学准备聘他去任待遇优厚的副教授时,苏步青却决定回国,回到抚育答是“吃苦算得了什么,我甘心情愿,因为我选择了一条正确的道路,这是一条爱国的光明之路啊”!这就是老一辈数学家那颗爱国的赤子之心。你还想了解苏步青其他的故事吗?可以自己搜集阅读并且分享给你的伙伴。2.时间要求(5分钟)3.作业分析与设计意图数学家苏步青的故事告诉我们“数学是科学的开路先锋,为了发展科学,为了祖我们美好未来,才能使国家强大,才能使国家不受外敌欺凌。学习数学还可以培养学力。附参考答案:作业1(基础性作业)(1)B(2)①不正确,不是同类项不能合并,应为2a33a2②不正确,不是同类项不能合并,应为3a2b③正确④不正确,应为5a24a2a2(3)①5mn

②8a2b2ab25(4)

3x23x2 -2作业2(发展性作业)(1)①y2

②答案不止一个,如:a2b(2)

m1

a2b3(3)A(4)6a2babb2 6(5)解:原式3n)x2m)x-18y5代数式3x22ymx53nx26x20y的值与字母

x的取值无关6m

33n0m12m2mnn32626(1)33 3412115作业一(基础性作业)1.作业内容(1)去括号①a21③x(3y)去括号②x(y④3y)⑤x3(2yz)

⑥x5(2y3z)①x2(3x2)x23x2②7a1)7a1③2m2(3m5)2m23m5④(ab1)abab1

( )( )( )( )作业评价表ABC答题的准确性ABC答题的规范性ABC解法的创新性ABCABC4.作业分析与设计意图律去括号。为防止出错,可以先用乘法分配律将数字乘括号内的每一项,再去括号。作业评价时要关注学生去括号后对题中“符号”的处理。作业题(2)通过给出4个括号后仍有几项.培养学生观察能力和思维的严谨性。(1)先去括号再合并同类项①8a2b(5ab); ②a(5a2(a2b)③x(1x)2(2x4)

④2xy5(xy3y)(2)将2a5a(2a7b)化简正确的是( )9a10b8a10b2a8a10b(3)先化简,再求值①a25a22a2(a2a),其中a5y2(3xy2x2y);其中x1,y22____(3)选做题:有理数a、b、c在数轴上的位置如图所示,且表示数ab的点与原点的距离相等.____bbc 0a①用“>”“=”或“<”填空:bbc 0;②化简|ab||ac||bc|2.作业时间(5分钟)

0,ab作业评价表

0,ac 0,ABC答题的准确性ABC答题的规范性ABC解法的创新性ABCABC4.作业分析与设计意图洁美。检验学生对本课时知识点理解的同时,也考查前一课时的知识点综合运用,等知识,根据数轴判断各式的符号是解题关键.培养学生严谨的逻辑思维。数学符号的发展历程的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文“plu”(“加”的意思)的第一个字母表示加,草为“μ”最后都变成了“+”号。“-”号是从拉丁文“minus”(“减”的意思)演变来的,一开始简写为m,再因快速书写而简化为“-”了。也有人说,卖酒的商人用“-”表示酒桶里的酒卖了多少。以后,当把新酒灌入大桶的时候,就在“-”上加一竖,意思是把原线条勾销,这样就成了个“+”号。减号。乘号曾经用过十几种,现代数学通用两种。一个是“×”,最早是英国数学家奥屈特1631德国数学家莱布尼茨认为:“×”号像拉丁字母“X”,可能引起混淆而加以反对,并赞成用“・”号(事实上点乘在某些情况下亦易与小数点相混淆)。后来他还提出用“∩“表示相乘。这个符号在现代已应用到集合论中了。是“+”的旋转变形,是另一种表示增加的符号。“÷”最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥家拉哈在他所著的《代数学》里,才根据群众创造,正式将“÷”作为除号。平方根号曾经用拉丁文“Radix”(根)的首尾两个字母合并起来表示,根号。“√”是由拉丁字线“r”的变形,“ ̄”是括线。十六世纪法国数学家维叶特用“=”表示两个量的差别。可是英国牛津大等是最合适不过的了,于是等于符号“=”就从1540年开始使用起来。1591十七世纪德国莱布尼茨广泛使用了“=”号,他还在几何学中用“∽”表示相似,用“≌”表示全等。1631年英国著名代数学家赫锐奥特创用。至于“≥”、“≤”、“≠”这三个符号的出现,是很晚很晚的事了。大括号“{}”和中括号“[]”是代数创始人之一魏治德创造的。任意号(全称量词)来源于英语中的Arbitrary一词,因为小写和大写均容易造成混淆,故将其单词首字母大写后倒置。同样,存在号(存在量词)来源于Exist一词中E的反写。有关知识。2.时间要求(5分钟)3.作业分析与设计意图简便了数学符号使数学发展的速度加快了。可以说,数学是数学符号的学问。义,灵活运用数学符号。这样,就能更有效地从实际问题中概括出变量之间的关法进一步表明数学问题的内部联系。附参考答案:作业一(基础性作业)(1)①a23a1④3xy(2)

②xy3⑤x6y3z

③x3y⑥x10y15z①错 x2(3x2)=x23x2②错 7a1)=7a1③对④错 (ab1)=abab1作业二(发展性作业)(1) ①13ab(2) A

②4ab

③4x7

④xy17y(3) ①80 ②4(4) ①< = > < ②a2cbPAGEPAGE37作业一(基础性作业)(1)在下列各题的括号内,填写适当的项:①abcda( ) ②abcda( )d③abcda( );④abcdab( )(2)下列各代数式中与代数式ab的值相等的是( )A.a(b3c)

B.a(b3c)

C.a(b3c)

D.a(b3c)(3)不改变多项式x3x2yxy2y3的值,按下列要求把它的后两项用括号括起来:①括号前带有“+”号; ②括号前带有“+”号.2.时间要求(8分钟)3.评价设计作业评价表ABC答题的准确性ABC答题的规范性ABC解法的创新性ABCABC作业第(1)题使学生掌握添括号法则,加深学生对添括号法则的理解和应用;①②要求学生掌握添括号法则改变符号;③④要求学生掌握添括号法则1则中符号的变化规则。作业第(3)题考察学生对题目理解能力,按照要求利用添括号法则做题,进步加深学生对添括号法则的理解和应用。1.作业内容(1)下列添括号错误的是( )A.34x(4x2ab(ab)(2ab)C.x25x4(x25x4)

D.a24aa35(a24a)(a35)(2)若a3的值等于5,则4a的值为( )A.6 B.2 C.-4 D.8(3)若代数式x2y3;则代数式 .(4)选做题

x24y2x1的值为已知ab3,cd2(ad)的值是 ( )2.时间要求(10分钟以内)3.评价设计作业评价表ABC答题的准确性ABC答题的规范性ABC解法的创新性ABCA综BC意可得a2,先用添括号法则对式子进行变形,然后利用整体代入法求值,用。先将代数式去括号,再添括号,将代数式适当变形,再将ab3,cd2算能力。作业3(实践性作业)1.作业内容PAGEPAGE40数学小故事:

数学家祖冲之的故事祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就代杰出的数学家、天文学家。祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后了《大明历》,开辟了历法史的新纪元。卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为“祖暅原理”。你还想了解祖冲之其他的故事吗?可以自己搜集阅读并且分享给你的伙伴。2.时间要求(5分钟)3.作业分析与设计意图通过阅读数学小故事,了解相关数学史以及我国古代数学家在数学上的造于实践的研究精神,努力开阔自己的思想,为中华民族的发展作出贡献。附参考答案:作业一(基础性作业)(1) ①

bcd

②bc

③bcd

④cd(2)A (3)①x3x2y(xy2y3)作业二(发展性作业)

②x3x2y(xy2y3)(1)D (2)B (3)25 (4)A作业1(基础性作业)1.作业内容(1)计算:3a(2a2)(2a)3a2(2)把多项式2x2y3xy2x3y34重新排列:①按x的降幂排列, ②按y的升幂排列,(3)先化简,再求值:2(2x3y)(3x2y1)其中x2(4)多项式x22kxy3y26xy1化简后不含xy项,则k .2.时间要求(10分钟)3.评价设计作业评价表ABC答题的准确性ABC答题的规范性ABC解法的创新性ABCABC4.作业分析与设计意图合并同类项等有关知识的综合考察,要求学生对知识有系统性的掌握;第(2)幂排列,当按x的升降幂排列时,则与y的指数无关、当按y的升降幂排列时,则与x去括号、合并同类项、整式加减及求代数值的综合应用,提高学生的解题能力。在代入求值计算时,注意正负号的问题,y是一个负数,要加括号作为一个整体计算。第(4)题考查多项式的化简,最后的化简结果不包括哪一项,说明这一项的系数为0,学生要转变思维,正确解答此题。作业2(发展性作业)1.作业内容(1)x2ax2y7(bx22x9y1)的值与xab的值为( )3

1

-2

2(2)已知:A3mxmxm化简:3A2B。(3)先化简,再求值:x1

3x2y[2x2y(2xyzx2z)4x2z]xyz其中nmnmn其中m,n为有理数,化简(a2b3ab)(5a2b4ab),并求出当a3的值.2.时间要求(10分钟)3.评价设计作业评价表ABC答题的准确性ABC答题的规范性ABC解法的创新性ABCABC4.作业分析与设计意图作业第(1)题考察学生对去括号和整式加减的运用能力,并对有关知识进行变式思考,本题与x的取值无关,那么x前的系数即为很有挑战性。要求学生在读懂题目的基础上,换角度思考,理解题目意思。除此之外,对乘方和绝对值的概念也进行了考查,进行a、b的求值之后再代入原式,根据新运算规则进行解答;使学有余力的学生对知识有更深一步的理解。作业3(实践性作业)1.作业内容数学小故事数学家华罗庚的故事的毅力和崇高的追求,终于成为一代数学宗师。4中,为祖国建设事业奋斗终生华爷爷悉心栽培年轻一代,让青年数学家茁壮成儿使他们脱颖而出,工作之余还不忘给青多年朋友写一些科普读物。下面就是华罗庚爷爷曾经介绍给同学们的一个有趣的数学游戏:有位老师,想辨别他的3个学生谁更聪明。他采用如下的方法:事先准备好3顶白帽子,2顶黑帽子,让他们看到,然后,叫他们闭上眼睛,分别给戴上帽子,藏起剩下的2顶帽子,最后,叫他们睁开眼,看着别人的帽子,说出自己所戴帽子的颜色,3个学生互相看了他们是怎么知道帽子颜色的呢“为了解决上面的伺题,我们先考虑“2人1顶黑帽,2顶白帽”问题。因为,黑帽只有1顶,我戴了,对方立刻会说自己戴的是白帽。但他踌躇了一会,可见我戴的是白帽。这样,“3人2顶黑帽,3顶白帽”的问题也就容易解决了。假设我戴的是黑帽子,则他们2人就变成“2人1顶黑帽,2顶白帽”问题,他们可以立刻回答出来,但他们都踌躇了一会,这就说明,我戴的是白帽子,3人经过同样的思考,于是,都推出自己戴的是白帽子。看到这里。同学们可能会拍手称妙一1少于复杂的问题要善于“退”,足够地“退”,“退”到最原始而不失去重要性的地方,是学好数学的一个诀窃。你还想了解华罗庚其他的故事吗?可以自己搜集阅读并且分享给你的伙伴。2.时间要求(10分钟)3.作业分析与设计意图数学家都能在艰苦的环境中不放弃自己的理想,不忘记自己的事业,兀兀穷年,己努力,就一定会获得成功。附参考答案:作业1(基础性作业):(1)a5a2(2)①x3y32x2y3xy24(3)17(4)3作业2(发展性作业)

②42x2y3xy2x3y3(1)A (2)11mx5m

(3)6 (4)435445六.单元质量检测作业(一)单元质量检测作业内容一、选择题(单项选择)1.下列代数式:1,2xy,1ab2,xy,5y,0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论