版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏泰州市高港实验学校数学八上期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,F是CB延长线上一点,AF⊥CF,垂足为F.下列结论:①∠ACF=45°;②四边形ABCD的面积等于AC2;③CE=2AF;④S△BCD=S△ABF+S△ADE;其中正确的是()A.①② B.②③ C.①②③ D.①②③④2.若关于的方程有正数根,则的取值范围是()A. B. C. D.且3.小明和小刚相约周末到河北剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min到达剧院.设小明的速度为3x米/分,则根据题意所列方程正确的是()A. B.C. D.4.如图为某居民小区中随机调查的户家庭一年的月平均用水量(单位:)的条形统计图,则这户家庭月均用水量的众数和中位数分别是().A., B., C., D.,5.下列因式分解中:①;②;③;④;正确的个数为()A.个 B.个 C.个 D.个6.下列式子中,计算结果等于a9的是()A.a3+a6B.a1.aC.(a6)3D.a12÷a27.对于所有实数a,b,下列等式总能成立的是()A. B.C. D.8.如图,,、分别是、的中点,则下列结论:①,②,③,④,其中正确有()A.个 B.个 C.个 D.个9.若是三角形的三边长,则式子的值(
).A.小于0 B.等于0 C.大于0 D.不能确定10.学校开展为贫困地区捐书活动,以下是5名同学捐书的册数:2,2,x,4,1.已知这组数据的平均数是4,则这组数据的中位数和众数分别是()A.2和2 B.4和2 C.2和3 D.3和2二、填空题(每小题3分,共24分)11.使有意义的的取值范围为_______.12.如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是________(添加一个即可)13.如图:在中,,为边上的两个点,且,,若,则的大小为______.14.如图,在中,,,,将绕点逆时针旋转得到,连接,则的长为__________.15.若多项式是一个完全平方式,则的值为_________.16.与最简二次根式是同类二次根式,则__________.17.当x=______________时,分式的值是0?18.函数,的图象如图所示,当时,的范围是__________.三、解答题(共66分)19.(10分)如图1,在锐角△ABC中,∠ABC=45°,高线AD、BE相交于点F.(1)判断BF与AC的数量关系并说明理由;(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.20.(6分)先化简,再求值.,从这个数中选取一个合适的数作为的值代入求值.21.(6分)在△ABC中,AB、AC边的垂直平分线分别交BC边于点M、N(1)如图①,若∠BAC=110°,则∠MAN=°,若△AMN的周长为9,则BC=(2)如图②,若∠BAC=135°,求证:BM2+CN2=MN2;(3)如图③,∠ABC的平分线BP和AC边的垂直平分线相交于点P,过点P作PH垂直BA的延长线于点H.若AB=5,CB=12,求AH的长22.(8分)如图,OC平分∠AOB,OA=OB,PD⊥AC于点D,PE⊥BC于点E,求证:PD=PE.23.(8分)如图所示,在△ABC中,AC=10,BC=17,CD=8,AD=1.求:(1)BD的长;(2)△ABC的面积.24.(8分)如图,四边形ABDC中,∠D=∠ABD=90゜,点O为BD的中点,且OA平分∠BAC.(1)求证:OC平分∠ACD;(2)求证:AB+CD=AC25.(10分)(1)如图,在中,,于点,平分,你能找出与,之间的数量关系吗?并说明理由.(2)如图,在,,平分,为上一点,于点,这时与,之间又有何数量关系?请你直接写出它们的关系,不需要证明.26.(10分)先化简再求值:若,求的值.
参考答案一、选择题(每小题3分,共30分)1、C【分析】证明≌,得出,正确;由,得出,正确;证出,,正确;由,不能确定,不正确;即可得出答案.【题目详解】解:∵∠CAE=90°,AE=AC,∴∠E=∠ACE=45°,∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=∠EAD+∠CAD∴∠BAC=∠EAD,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACF=∠E=45°,①正确;∵S四边形ABCD=S△ABC+S△ACD,∴S四边形ABCD=S△ADE+S△ACD=S△ACE=AC2,②正确;∵△ABC≌△ADE,∠ACB=∠AEC=45°,∵∠ACE=∠AEC=45°,∴∠ACB=∠ACE,∴AC平分∠ECF,过点A作AG⊥CG,垂足为点G,如图所示:∵AC平分∠ECF,AF⊥CB,∴AF=AG,又∵AC=AE,∴∠CAG=∠EAG=45°,∴∠CAG=∠EAG=∠ACE=∠AEC=45°,∴CG=AG=GE,∴CE=2AG,∴CE=2AF,③正确;∵S△ABF+S△ADE=S△ABF+S△ABC=S△ACF,不能确定S△ACF=S△BCD,④不正确;故选:C.【题目点拨】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质等知识;证明三角形全等是解题的关键.2、A【分析】分式方程去分母转化为整式方程,表示出x,根据方程有正数根列出关于k的不等式,求出不等式的解集即可得到k的范围.【题目详解】去分母得:2x+6=1x+1k,解得:x=6﹣1k,根据题意得:6﹣1k>0,且6﹣1k≠﹣1,6﹣1k≠﹣k,解得:k<2且k≠1.∴k<2.故选:A.【题目点拨】本题考查了分式方程的解,方程的解即为能使方程左右两边相等的未知数的值.3、A【分析】根据小明和小刚的速度比是3:4,小明的速度为3x米/分,则小刚的速度为4x米/分,再根据“结果小明比小刚提前4min到达剧院”关系式即可得出答案.【题目详解】小明和小刚的速度比是3:4,小明的速度为3x米/分小刚的速度为4x米/分小明用的时间为,小刚用的时间为所列方程应该为:故选A.【题目点拨】本题考查了分式方程的应用,读懂题意找到关系式是解题的关键.4、B【解题分析】根据统计图可得众数为,将10个数据从小到大排列:,,,,,,,,,.∴中位数为,故选.5、C【分析】根据因式分解的方法逐个判断即可.【题目详解】解:①,故①错误;②,故②错误;③,正确,④,故④错误,所以正确的只有③,故答案为:C.【题目点拨】本题考查了判断因式分解是否正确,掌握因式分解的方法是解题的关键.6、B【分析】根据同底数幂的运算法则对各项进行计算即可.【题目详解】A.a3+a6=a3+a6,错误;B.,正确;C.,错误;D.,错误;故答案为:B.【题目点拨】本题考查了同底数幂的运算,掌握同底数幂的运算法则是解题的关键.7、B【题目详解】解:A、错误,∵;B、正确,因为a2+b2≥0,所以=a2+b2;C、错误,是最简二次根式,无法化简;D、错误,∵=|a+b|,其结果a+b的符号不能确定.故选B.8、C【分析】根据三角形的中位线定理“三角形的中位线平行于第三边”可得,,再由45°角可证△ABQ为等腰直角三角形,从而可得可得,进而证明,利用三角形的全等性质求解即可.【题目详解】解:如图所示:连接,延长交于点,延长交于,延长交于.,,,,点为两条高的交点,为边上的高,即:,由中位线定理可得,,,故①正确;,,,,,,根据以上条件得,,,故②正确;,,,故③成立;无法证明,故④错误.综上所述:正确的是①②③,故选C.【题目点拨】本题考点在于三角形的中位线和三角形全等的判断及应用.解题关键是证明.9、A【分析】先利用平方差公式进行因式分解,再利用三角形三边关系定理进行判断即可得解.【题目详解】解:=(a-b+c)(a-b-c)根据三角形两边之和大于第三边,两边之差小于第三边,(a-c+b)(a-c-b)<0故选A.【题目点拨】本题考查了多项式因式分解的应用,三角形三边关系的应用,熟练掌握三角形三条边的关系是解答本题的关键.10、D【解题分析】试题分析:根据平均数的含义得:=4,所以x=3;将这组数据从小到大的顺序排列(2,2,3,4,1),处于中间位置的数是3,那么这组数据的中位数是3;在这一组数据中2是出现次数最多的,故众数是2.故选D.考点:中位数;算术平均数;众数二、填空题(每小题3分,共24分)11、x≤【分析】根据被开方数大于等于0列式进行计算即可得解.【题目详解】根据题意得,2-4x≥0,
解得x≤.
故答案为:x≤.【题目点拨】此题考查二次根式有意义的条件,解题关键在于掌握二次根式的被开方数是非负数.12、∠D=∠B【分析】要判定△ADF≌△CBE,已经有AD=BC,DF=BE,还缺少第三组对应边相等或这两边组成的夹角相等,根据全等三角形的判定方法求解即可.【题目详解】∵AD=BC,DF=BE,∴只要添加∠D=∠B,根据“SAS”即可证明△ADF≌△CBE.故答案为∠D=∠B.【题目点拨】本题重点考查的是全等三角形的判定方法,熟练掌握全等三角形的知识是解答的关键,应该多加练习.三角形全等的判定定理有:边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS).13、【分析】根据三角形内角和求出∠A+∠B,再根据AC=AE,BC=BD,用∠A表示∠AEC,用∠B表示∠BDC,然后根据内角和求出∠DCE的度数.【题目详解】∵∠ACB=1080,∴∠A+∠B=1800-1080=720,∵AC=AE,BC=BD,∴∠ACE=∠AEC,∠BCD=∠BDC,∴=∵∠DCE+∠CDE+∠DEC=1800,∴====360【题目点拨】此题考察等腰三角形的性质,注意两条等边所在三角形,依此判断对应的两个底角相等.14、【分析】根据旋转的性质可得出,在中利用勾股定理求解即可.【题目详解】解:∵,,,∴,∵将绕点逆时针旋转得到,∴∴∴在中,.故答案为:.【题目点拨】本题考查的知识点是旋转的性质以及勾股定理,利用旋转的性质得出是解此题的关键.15、-5或1【解题分析】试题解析:∵x2-(m-1)x+9=x2-(m-1)x+32,∴(m-1)x=±2×3×x,解得m=-5或1.16、1【分析】先把化为最简二次根式,再根据同类二次根式的定义得到m+1=2,然后解方程即可.【题目详解】解:∵,∴m+1=2,∴m=1.故答案为1.【题目点拨】本题考查了同类二次根式:几个二次根式化为最简二次根式后,若被开方数相同,那么这几个二次根式叫同类二次根式.17、-1【解题分析】由题意得,解之得.18、【分析】当时,的图象在的图象的下方可知.【题目详解】解:当时,,,两直线的交点为(2,2),当时,,,两直线的交点为(-1,1),由图象可知,当时,x的取值范围为:,故答案为:.【题目点拨】本题考查了一次函数与一元一次不等式,解题的关键是准确看图,通过图象得出x的取值范围.三、解答题(共66分)19、(1)BF=AC,理由见解析;(2)NE=AC,理由见解析.【分析】(1)如图1,证明△ADC≌△BDF(AAS),可得BF=AC;
(2)如图2,由折叠得:MD=DC,先根据三角形中位线的推论可得:AE=EC,由线段垂直平分线的性质得:AB=BC,则∠ABE=∠CBE,结合(1)得:△BDF≌△ADM,则∠DBF=∠MAD,最后证明∠ANE=∠NAE=45°,得AE=EN,所以EN=AC.【题目详解】(1)BF=AC,理由是:如图1,∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEF=90°,∵∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵∠AFE=∠BFD,∴∠DAC=∠EBC,在△ADC和△BDF中,∵,∴△ADC≌△BDF(AAS),∴BF=AC;(2)NE=AC,理由是:如图2,由折叠得:MD=DC,∵DE∥AM,∴AE=EC,∵BE⊥AC,∴AB=BC,∴∠ABE=∠CBE,由(1)得:△ADC≌△BDF,∵△ADC≌△ADM,∴△BDF≌△ADM,∴∠DBF=∠MAD,∵∠DBA=∠BAD=45°,∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,即∠ABE=∠BAN,∵∠ANE=∠ABE+∠BAN=2∠ABE,∠NAE=2∠NAD=2∠CBE,∴∠ANE=∠NAE=45°,∴AE=EN,∴EN=AC.20、;当时,原式=3【分析】先根据分式的各个运算法则化简,然后代入一个使原分式有意义的x的值计算即可.【题目详解】解:要使原式有意义且当时,原式【题目点拨】此题考查的是分式的化简求值题,掌握分式的各个运算法则和分式有意义的条件是解决此题的关键.21、(1)40;9;(2)见详解;(3)3.1【分析】(1)根据线段垂直平分线的性质得到AM=BM,NA=NC,根据等腰三角形的性质得到BAM=∠B,∠NAC=∠C,结合图形计算即可;(2)连接AM、AN,仿照(1)的作法得到∠MAN=90°,根据勾股定理证明结论;(3)连接AP、CP,过点P作PE⊥BC于点E,根据线段垂直平分线的性质得到AP=CP,根据角平分线的性质得到PH=PE,证明Rt△APH≌Rt△CPE得到AH=CE,证明△BPH≌△BPE,得到BH=BE,结合图形计算即可.【题目详解】解:(1)∵∠BAC=110°,∴∠B+∠C=180°﹣110°=70°,∵AB边的垂直平分线交BC边于点M,∴AM=BM,∴∠BAM=∠B,同理:NA=NC,∴∠NAC=∠C,∴∠MAN=110°﹣(∠BAM+∠NAC)=40°,∵△AMN的周长为9,∴MA+MN+NA=9,∴BC=MB+MN+NC=MA+MN+NA=9,故答案为:40;9;(2)如图②,连接AM、AN,∵∠BAC=131°,∴∠B+∠C=41°,∵点M在AB的垂直平分线上,∴AM=BM,∴∠BAM=∠B,同理AN=CN,∠CAN=∠C,∴∠BAM+∠CAN=41°,∴∠MAN=∠BAC﹣(∠BAM+∠CAN)=90°,∴AM2+AN2=MN2,∴BM2+CN2=MN2;(3)如图③,连接AP、CP,过点P作PE⊥BC于点E,∵BP平分∠ABC,PH⊥BA,PE⊥BC,∴PH=PE,∵点P在AC的垂直平分线上,∴AP=CP,在Rt△APH和Rt△CPE中,,∴Rt△APH≌Rt△CPE(HL),∴AH=CE,在△BPH和△BPE中,,∴△BPH≌△BPE(AAS)∴BH=BE,∴BC=BE+CE=BH+CE=AB+2AH,∴AH=(BC﹣AB)÷2=3.1.【题目点拨】本题考查的是全等三角形的判定和性质、勾股定理、线段垂直平分线的性质、角平分线的性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.22、详见解析.【解题分析】根据OC平分∠AOB,得到∠AOC=∠BOC,证得△AOC≌△BOC,根据全等三角形的性质得到∠ACO=∠BCO,根据角平分线的性质即可得到结论.【题目详解】∵OC平分∠AOB,∴∠AOC=∠BOC.在△AOC和△BOC中,∵OC=OC,∠AOC=∠BOC,OA=OB,∴△AOC≌△BOC(SAS),∴∠ACO=∠BCO.又∵PD⊥AC,PE⊥BC,∴PD=PE.【题目点拨】本题考查了全等三角形的判定和性质,角平分线的定义和性质,熟练掌握全等三角形的判定定理是解题的关键.23、(1)BD=15;(2)S△ABC=2.【分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年绥阳人民法院公开招聘聘用制书记员备考题库带答案详解
- 2026年江西省水利投资集团有限公司中层管理人员招聘备考题库参考答案详解
- 2026年通辽经济技术开发区第一幼儿园招聘代课教师备考题库及完整答案详解一套
- 2026年黟县国有投资集团有限公司公开招聘劳务派遣人员备考题库及参考答案详解
- 中学学生资助政策制度
- 2026年杭州市上城区望江街道社区卫生服务中心编外招聘备考题库及1套完整答案详解
- 2026年西安高新一中沣东中学招聘备考题库及参考答案详解1套
- 2026年鲤城区新步实验小学秋季招聘合同制顶岗教师备考题库及一套完整答案详解
- 企业合同管理与审批制度
- 企业项目管理与风险识别手册
- 金矿开采提升项目可行性研究报告
- 华润燃气安全培训
- 包钢集团历年笔试题库及答案
- 2025版实验动物中心动物实验动物饲养合同
- 2.3河流与湖泊我国第一大河长江课件-八年级地理上学期人教版
- 人工耳蜗术后护理指南
- 2025综合安防系统建设与运维手册
- GB/T 45698-2025物业服务客户满意度测评
- GB/T 16603-2025锦纶牵伸丝
- 燃气使用分摊协议书
- 《比较教材研究》课件
评论
0/150
提交评论