一元二次不等式教案职高(四篇)_第1页
一元二次不等式教案职高(四篇)_第2页
一元二次不等式教案职高(四篇)_第3页
一元二次不等式教案职高(四篇)_第4页
一元二次不等式教案职高(四篇)_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

本文格式为Word版,下载可任意编辑——一元二次不等式教案职高(四篇)作为一位兢兢业业的人民教师,往往要写一份优秀的教案,教案是保证教学取得成功、提高教学质量的基本条件。教案书写有哪些要求呢?我们怎样才能写好一篇教案呢?这里我给大家共享一些最新的教案范文,便利大家学习。

一元二次不等式教案职高篇一

(1)透彻理解、把握一元二次方程、一元二次不等式与二次函数的内在联系,会解一元二次不等式;

(2)培养学生数学的数形结合思想和转化能力,学会主动探求问题和寻觅解决问题的方法。

一元二次不等式的解法(图象法)

(1)一元二次方程、一元二次不等式与二次函数的关系;

(2)数形结合思想的渗透

尝试摸索教学法、归纳概括。

一、复习引入

1.复习一元一次方程、一元一次不等式与一次函数的关系

[师]前面我们已经学习了绝对值不等式的解法,今天开始研究一元二次不等式的解法。(板书课题)记得在初中我们已学习了一元一次不等式的解法,还记得是用什么方法解的吗?

学生可能回复是代数方法,也可能说是利用直线图象。

[师]初中学习了一次函数的图象,使得我们对一元一次不等式的解法有了更深入的了解。首先请同学们画出y=2x-7

[师]请同学们画出图象,并回复问题。

一次函数y=2x-7的图象如下:

填表:

当x时,y=0,即2x-70;

当x时,y0,即2x-70;

注:(1)引导学生由图象得出结论(数形结合)

(2)由学生填空(一边演示y0部分图象)

从上例的特别情形,你能得出什么结论?

注:教师引导下学生发现其结论,并由学生尝试表达:一元一次方程ax+b=0的根实质上就是直线y=ax+b与x轴交点的横坐标;一元一次不等式ax+b>0(或ax+b0(即y>0)的解集是

不等式x2-4x+30,y0,=0,0;

(2)-3x2+6x>2;

(3)4x2-4x+1>0;

(4)-x2+2x-3>0.

注:跟学生共同详细分析(1),强调解题规范性,其余(2)(3)(4)由学生完成,并小组探讨。

解:(1)方程2x2-3x-2=0的两根为x1=-或x2=2,(画草图,结合图象)

所以原不等式的解集是{x|x2}

四、课后作业:书p21/习题1.5/1.3.5.6

五、教学设计说明:

1、本节课教学设计力图表达以学生发展为本,遵循学生的认知规律,表达循序渐进的教学原则,通过对原有知识的复习,引导学生类比摸索新的知识,激发学生的求知欲望,调动学生的积极性。

2、本节课采用在教师引导下启发学生摸索发现,体会解题过程中形结合思想方法,使之获得内心感受。

3、本节课的重点是利用图象解一元二次不等式,让学生明确一元二次方程、一元二次不等式与二次函数之间的联系。在思维训练方面,重视从特别到一般,从具体到抽象思维的培养。归纳总结可以训练学生的收敛思维,有助于完善学生的思维结构。

4、本节课的例题及课堂练习是课本上的习题,其目的在于落实基础,提高运算能力。

一元二次不等式教案职高篇二

3.2一元二次不等式及其解法

一、知识与技能

1.稳定一元二次不等式的解法和解法与二次函数的关系、一元二次不等式解法的步骤、解法与二次函数的关系两者之间的区别与联系;

2.能熟练地将分式不等式转化为整式不等式(组),正确地求出分式不等式的解集;

3.会用列表法,进一步用数轴标根法求解分式及高次不等式;

4.会利用一元二次不等式,对给定的与一元二次不等式有关的问题,尝试用一元二次不等式解法与二次函数的有关知识解题.

二、过程与方法

1.采用探究法,依照思考、交流、试验、观测、分析得出结论的方法进行启发式教学;

2.发挥学生的主体作用,作好探究性教学;

3.理论联系实际,激发学生的学习积极性.

三、情感态度与价值观

1.进一步提高学生的运算能力和思维能力;

2.培养学生分析问题和解决问题的能力;

3.加强学生应用转化的数学思想和分类探讨的数学思想.

1.从实际问题中抽象出一元二次不等式模型.

2.围绕一元二次不等式的解法展开,突出表达数形结合的思想.

1.深入理解二次函数、一元二次方程与一元二次不等式的关系.

启发、探究式教学

复习引入

师:上一节课我们通过具体的问题情景,体会到现实世界存在大量的不等量关系,并且研究了用不等式或不等式组来表示实际问题中的不等关系。回想下等比数列的性质。

生:略

师:某同学要把自己的计算机接入因特网,现有两种isp公司可供选择,公司a每小时收费1.5元(不足1小时按1小时计算),公司b的收费原则是第1小时内(含恰好1小时,下同)收费1.7元,第2小时内收费1.6元以后每小时减少0.1元(若用户一次上网时间超过17小时,按17小时计算)那么,一次上网在多少时间以内能够保证选择公司a的上网费用小于等于选择公司b所需费用。

学生自己探讨

点题,板书课题

新课学习

1.一元二次不等式

只有一个未知数,并且未知数的最高次数是2的不等式。

2.三个“二次〞之间的关系及一元二次不等式的解法

师在前面我们已经学习过一元二次不等的解法,发现一元二次方程及对应的二次函数有关系,那么同学们课本开启到p77填表格。

生略

师学生探讨归纳出解一元二次不等式的步骤

一看:看二次项系数的正负,并且变形为

二算:,判断正负,有根则求并画出对应的函数图象

三写:写出原不等式的解集

练习反馈

[例题剖析]

例1解以下不等式

(1)(2)

(3)(4)

(5)(6)

课本80页练习

例2已知不等式的解集为试解不等式

变式:

已知

课堂

小结

1.三个“二次的关系〞

2.解二次不等式的步骤

作业布置

课本第80页习题3.2a组第1.2.4题b组1

练习调配

设计42页全做,43页例1例2随堂练习2.3,4,5测评1、3、4、5、6、7、8、

一元二次不等式教案职高篇三

解一元二次不等式化为标准型。判断△的符号。若△<0,则不等式是在r上恒成立或恒不成立。

若△>0,则求出两根,在数轴上标出,每个根上画一条竖线,再从右到左相间标正负号,不等式大于0则取标正的范围,小于0则取标负的范围。

2.解简单一元高次不等式

a.化为标准型。

b.将不等式分解成若干个因式的积。

c.求出各个根,在数轴上标出,每个根上画一条竖线,再从右到左相间标正负号,不等式大于0则取标正的范围,小于0则取标负的范围。

3.解分式不等式的解

a.化为标准型。

b.可将分式化为整式,将整式分解成若干个因式的积。

c.求出各个根,在数轴上标出,每个根上画一条竖线,再从右到左相间标正负号,不等式大于0则取标正的范围,小于0则取标负的范围。(假使不等式是非严格不等式,则要注意分式分母不等于0。)

4.解含参数的一元二次不等式

a.对二次项系数a的探讨。

若二次项系数a中含有参数,则须对a的符号进行分类探讨。分为a>0,a=0,a<0。

b.对判别式△的探讨

若判别式△中含有参数,则须对△的符号进行分类探讨。分为△>0,△=0,△<0。

c.对根大小的探讨

若不等式对应的方程的根x1、x2中含有参数,则须对x1、x2的大小进行分类探讨。分为x1>x2,x1=x2,x1<x2。

5.一元二次方程的根的分布问题

a.将方程化为标准型。(a的符号)

b.画图观测,若有区间端点对应的函数值小于0,则只须探讨区间端点的函数值。

若没有区间端点对应的函数值小于0,则须探讨区间端点的函数值、△、轴。

6.一元二次不等式的应用

⑴在r上恒成立问题(恒不成立问题相反,在某区间恒成立可转化为实根分布问题)

a.对二次项系数a的符号进行探讨,分为a=0与a≠0。

b.a=0时,把a=0带入,检验不等式是否成立,判断a=0是否属于不等式解集。

a≠0时,则转化为二次函数图像全在x轴上方或下方。

若f(x)>0,则要求a>0,△<0。

若f(x)<0,则要求a<0,△<0。

⑵特别题型:已知一不等式的解集(含有字母),求另一不等式的解集(与原不等式系数大小一致,位置不同)。a.写出原不等式对应的方程,由韦达定理得出解集字母与方程系数间的关系。

b.写出变换后不等式对应的方程,由由韦达定理得出解集字母与方程系数间的关系。

c.将a中得到的关系变化后带入b的关系中,得到变换后方程的两根。

d.判断两根的大小,变换后不等式二次项的系数,从而写出所求解集。

一元二次不等式教案职高篇四

把握求解一元二次不等式的简单方法,能正确求解一元二次不等式的解集。

在探究一元二次不等式的解法的过程中,提升规律推理能力。

感受数学知识的前后联系,提升学习数学

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论