




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省思南县联考2024届八上数学期末教学质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,将一张含有角的三角形纸片的两个顶点放在直尺的两条对边上,若,则的度数是()A. B. C. D.2.如图,已知AD=CB,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.∠DAB=∠CBA C.∠CAB=∠DBA D.∠C=∠D=90°3.如图,平分,于点,于点,,则图中全等三角形的对数是()
A.1对 B.2对 C.3对 D.4对4.如图,ABCD是正方形场地,点E在DC的延长线上,AE与BC相交于点F,有甲、乙、丙三名同学同时从点A出发,甲沿着A﹣B﹣F﹣C的路径行走至C,乙沿着A﹣F﹣E﹣C﹣D的路径行走至D,丙沿着A﹣F﹣C﹣D的路径行走至D,若三名同学行走的速度都相同,则他们到达各自的目的地的先后顺序(由先至后)是()A.甲乙丙 B.甲丙乙 C.乙丙甲 D.丙甲乙5.若=,把实数在数轴上对应的点的位置表示出来,可能正确的是()A. B.C. D.6.分式有意义的条件是()A. B. C.且 D.7.如图,中,,,,则等于()A. B. C. D.8.已知一次函数y=kx﹣b(k≠0)图象如图所示,则kx﹣1<b的解集为()A.x>2 B.x<2 C.x>0 D.x<09.一组数据:,若增加一个数据,则下列统计量中,发生改变的是()A.方差 B.众数 C.中位数 D.平均数10.元旦期间,某水果店第一天用320元钱购进苹果销售,第二天又用800元钱购进这种苹果,所购数量是第一天购进数量的2倍,但每千克苹果的价格比第一天购进价多1元,若设水果店第一天购进水果千克苹果,则可列方程为().A. B. C. D.二、填空题(每小题3分,共24分)11.某校拟招聘一批优秀教师,其中某位教师笔试、试讲、面试三轮测试得分分别为92分、85分、90分,综合成绩笔试占40%,试讲占40%,面试占20%,则该名教师的综合成绩为_______分.12.如图,将△ABC沿着AB方向,向右平移得到△DEF,若AE=8,DB=2,则CF=______.13.如图,下列推理:①若∠1=∠2,则;②若则∠3=∠4;③若,则;④若∠1=∠2,则。其中正确的个数是(填序号)__________。14.代数式(x﹣2)0÷有意义,则x的取值范围是_____.15.如图,在中,,,的垂直平分线与交于点,与交于点,连接.若,则的长为____________.16.如图,Rt△ABC中,∠C=90°,以点B为圆心,适当长为半径画弧,与∠ABC的两边相交于点E,F,分别以点E和点F为圆心,大于EF的长为半径画弧,两弧相交于点M,作射线BM,交AC于点D.若AD=10cm,∠ABC=2∠A,则CD的长为__________cm.17.已知,,,…,若(,均为实数),则根据以上规律的值为__________.18.如图,是的中线,,,则和的周长之差是.三、解答题(共66分)19.(10分)是等边三角形,作直线,点关于直线的对称点为,连接,直线交直线于点,连接.(1)如图①,求证:;(提示:在BE上截取,连接.)(2)如图②、图③,请直接写出线段,,之间的数量关系,不需要证明;(3)在(1)、(2)的条件下,若,则__________.20.(6分)求证:三角形三个内角的和是180°21.(6分)如图,△ABC中,AB=AC,∠A=108°.(1)实践与操作:作AB的垂直平分线DE,与AB,BC分别交于点D,E(用尺规作图.保留作图痕迹,不要求写作法)(2)推理与计算:求∠AEC的度数.22.(8分)阅读:对于两个不等的非零实数、,若分式的值为零,则或.又因为,所以关于的方程有两个解,分别为,.应用上面的结论解答下列问题:(1)方程的两个解分别为、,则,;(2)方程的两个解中较大的一个为;(3)关于的方程的两个解分别为、(),求的23.(8分)甲、乙两车从城出发匀速行驶至城,在整个行驶过程中,甲、乙离开城的距离(千米)与甲车行驶的时间(小时)之间的函数关系如图所示,根据图象信息解答下列问题:(1)乙车比甲车晚出发多少时间?(2)乙车出发后多少时间追上甲车?(3)求在乙车行驶过程中,当为何值时,两车相距20千米?24.(8分)如图,点A、F、C、D在同一条直线上,已知AF=DC,∠A=∠D,BC∥EF,求证:AB=DE.25.(10分)如图,(1)画出关于轴对称的图形.(2)请写出点、、的坐标:(,)(,)(,)26.(10分)化简(1)(2)
参考答案一、选择题(每小题3分,共30分)1、C【分析】利用平行线的性质,三角形的外角的性质解决问题即可;【题目详解】解:如图,∵AB∥CD,∴∠3=∠2,∴∠3=∠1+30°,∵∠1=20°,∴∠3=∠2=50°;故选:C.【题目点拨】本题主要考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2、C【分析】由全等三角形的判定可求解.【题目详解】当AC=BD时,且AD=BC,AB=AB,由“SSS”可证△ABC≌△BAD;当∠DAB=∠CBA时,且AD=BC,AB=AB,由“SAS”可证△ABC≌△BAD;当∠CAB=∠DBA时,不能判定△ABC≌△BAD;当∠C=∠D=90°时,且AD=BC,AB=AB,由“HL”可证Rt△ABC≌Rt△BAD;故选C.【题目点拨】本题考查了全等三角形的判定,灵活运用全等三角形的判定是本题的关键.3、C【分析】根据SAS,HL,AAS分别证明,,,即可得到答案.【题目详解】∵平分,∴∠AOP=∠BOP,∵,OP=OP,∴(SAS)∴AP=BP,∵平分,∴PE=PF,∵于点,于点,∴(HL),∵平分,∴∠AOP=∠BOP,又∵∠OEP=∠OFP=90°,OP=OP,∴(AAS).故选C.【题目点拨】本题主要考查三角形全等的判定定理,掌握SAS,HL,AAS证明三角形全等,是解题的关键.4、B【分析】本题考查了正方形的性质,直角三角形的性质的应用,题目比较典型,难度适中.根据正方形的性质得出AB=BC=CD=AD,∠B=∠ECF,根据直角三角形得出AF>AB,EF>CF,分别求出甲、乙、丙行走的距离,再比较即可.【题目详解】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=90°,甲行走的距离是AB+BF+CF=AB+BC=2AB;乙行走的距离是AF+EF+EC+CD;丙行走的距离是AF+FC+CD,∵∠B=∠ECF=90°,∴AF>AB,EF>CF,∴AF+FC+CD>2AB,AF+FC+CD<AF+EF+EC+CD,∴甲比丙先到,丙比乙先到,即顺序是甲丙乙,故选B.【题目点拨】本题考查1.正方形的性质;2.线段的性质:两点之间线段最短;3.比较线段的长短.5、C【分析】先根据实数意义判断a的取值范围,再确定答案.【题目详解】因为2=<=<=3所以a更接近3所以把实数在数轴上对应的点的位置表示出来,只有C正确故选:C【题目点拨】考核知识点:实数和数轴上的点.确定无理数的取值范围是关键.6、A【分析】根据分式有意义的条件即可求出答案.【题目详解】根据题意得:x+1≠0,∴x≠﹣1.故选:A.【题目点拨】本题考查了分式有意义的条件,解答本题的关键是熟练运用分式有意义的条件,本题属于基础题型.7、B【分析】延长BO交AC于D,直接利用三角形的一个外角等于与它不相邻的两内角之和,即可得出结论.【题目详解】如图,延长BO交AC于D∵∠A=40°,∠ABO=20°,∴∠BDC=∠A+∠ABO=40°+20°=60°,∵∠ACO=30°,∴∠BOC=∠ACO+∠BDC=30°+60°=90°,故选:B.【题目点拨】此题主要考查了三角形外角的性质,熟记三角形的外角的性质是解本题的关键.8、C【分析】将kx-1<b转换为kx-b<1,再根据函数图像求解.【题目详解】由kx-1<b得到:kx-b<1.∵从图象可知:直线与y轴交点的坐标为(2,1),∴不等式kx-b<1的解集是x>2,∴kx-1<b的解集为x>2.故选C.【题目点拨】本题考查的是一次函数的图像,熟练掌握函数图像是解题的关键.9、A【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【题目详解】解:A、原来数据的方差=[(0-2)2+(1-2)2+2×(2-2)2+(3-2)2+(4-2)2]=,添加数字2后的方差=[(0-2)2+(1-2)2+3×(2-2)2+(3-2)2+(4-2)2]=,故方差发生了改变;B、原来数据的众数是2,添加数字2后众数仍为2,故B与要求不符;C、原来数据的中位数是2,添加数字2后中位数仍为2,故C与要求不符;D、原来数据的平均数是2,添加数字2后平均数仍为2,故D与要求不符;故选A.【题目点拨】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.10、D【分析】设该店第一次购进水果千克,则第二次购进水果千克,然后根据每千克水果的价格比第一次购进的贵了1元,列出方程求解即可.【题目详解】设该商店第一次购进水果x千克,根据题意得:,故选:D.【题目点拨】本题考查了分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.二、填空题(每小题3分,共24分)11、88.8【分析】根据加权平均公式进行计算,即可得到答案.【题目详解】解:由题意,则该名教师的综合成绩为:故答案为88.8【题目点拨】本题考查加权平均公式,解题的关键是掌握加权平均公式.12、1.【解题分析】根据平移的性质可得AB=DE,然后求出AD=BE,再求出AD的长即为平移的距离.【题目详解】∵△ABC沿AB方向向右平移得到△DEF,
∴AB=DE,
∴AB-DB=DE-DB,
即AD=BE,
∵AE=8,DB=2,
∴AD=12(AE-DB)=12×(8-2)=1,
即平移的距离为1.
∴CF=AD=1,
【题目点拨】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行(或在同一条直线上)且相等,对应线段平行(或在同一条直线上)且相等,对应角相等.13、②④【解题分析】根据平行线的判定定理以及平行线的性质,逐个推理判断即可.【题目详解】①若∠1=∠2,则AD//BC,故①错误;②根据两直线平行,内错角相等可得②正确;③若,则,故③错误;④若∠1=∠2,则AD//BC,所以可得,故④正确.故正确的有②④【题目点拨】本题主要考查平行线的性质定理,这是重点知识,必须熟练掌握.14、x≠2,x≠0,x≠1.【分析】根据分式的分母不为零、0的零次幂无意义来列出不等式,解不等式即可得到本题的答案.【题目详解】解:由题意得,x﹣2≠0,x≠0,x﹣1≠0,解得,x≠2,x≠0,x≠1,故答案为:x≠2,x≠0,x≠1.【题目点拨】本题考查的是分式有意义的条件、零指数幂,掌握分式的分母不为零,0的零次幂无意义是解题的关键.15、1【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角可得∠A=∠ABD,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠BDC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半解答即可.【题目详解】解:∵DE是AB的垂直平分线,
∴AD=BD=12cm,
∴∠A=∠ABD=15°,
∴∠BDC=∠A+∠ABD=15°+15°=30°,
∴在Rt△BCD中,BC=BD=×12=1.
故答案为1.【题目点拨】本题考查线段垂直平分线上的点到线段两端点的距离相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形30°角所对的直角边等于斜边的一半的性质.16、1【分析】由画法可以知道画的是角平分线,再根据角平分线性质解答即可.【题目详解】解:由题意可得:BD是∠ABC的角平分线,
∵∠ABC=2∠A,在Rt△ABC中,∠C=90°,
∴∠ABC=60°,∠A=30°,
∴∠CBD=∠DBA=30°,
∴BD=2CD,
∵∠DBA=∠A=30°,
∴AD=BD,
∴AD=2CD=10cm,
∴CD=1cm,
故答案为:1.【题目点拨】本题考查了基本作图,关键是根据角平分线的画法和性质解答.17、【分析】观察所给的等式,等号右边是,,,…,,据此规律可求得的值,从而求得结论.【题目详解】观察下列等式,,,…,∴,∵,∴,,∴.故答案为:.【题目点拨】本题主要考查的是二次根式的混合运算以及归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.18、1【分析】根据中线可得AD=CD,周长之差就是AB与BC的差,计算即可.【题目详解】∵BD是△ABC的中线,∴AD=CD,∴△ABD和△CBD的周长之差就是AB与BC的差,即AB-BC=1cm,故答案为:1.【题目点拨】本题考查三角形中线相关的计算,关键在于熟悉中线的性质.三、解答题(共66分)19、(1)见解析;(2)图②中,CE+BE=AE,图③中,AE+BE=CE;(3)1.1或4.1【分析】(1)在BE上截取,连接,只要证明△AED≌△AFB,进而证出△AFE为等边三角形,得出CE+AE=BF+FE,即可解决问题;(2)图②中,CE+BE=AE,延长EB到F,使BF=CE,连接,只要证明△ACE≌△AFB,进而证出△AFE为等边三角形,得出CE+BE=BF+BE,即可解决问题;图③中,AE+BE=CE,在EC上截取CF=BE,连接,只要证明△AEB≌△AFC,进而证出△AFE为等边三角形,得出AE+BE=CF+EF,即可解决问题;(3)根据线段,,,BD之间的数量关系分别列式计算即可解决问题.【题目详解】(1)证明:在BE上截取,连接,
在等边△ABC中,
AC=AB,∠BAC=60°
由对称可知:AP是CD的垂直平分线,AC=AD,∠EAC=∠EAD,
设∠EAC=∠DAE=x.
∵AD=AC=AB,
∴∠D=∠ABD=(180°-∠BAC-2x)=60°-x,
∴∠AEB=60-x+x=60°.
∵AC=AB,AC=AD,∴AB=AD,∴∠ABF=∠ADE,∵,∴△ABF≌△ADE,∴AF=AE,BF=DE,∴△AFE为等边三角形,∴EF=AE,∵AP是CD的垂直平分线,∴CE=DE,∴CE=DE=BF,
∴CE+AE=BF+FE=BE;(2)图②中,CE+BE=AE,延长EB到F,使BF=CE,连接在等边△ABC中,
AC=AB,∠BAC=60°
由对称可知:AP是CD的垂直平分线,AC=AD,∠EAC=∠EAD,
∴AB=AD,CE=DE,∵AE=AE∴△ACE≌△ADE,∴∠ACE=∠ADE∵AB=AD,∴∠ABD=∠ADB∴∠ABF=∠ADE=∠ACE∵AB=AC,BF=CE,∴△ACE≌△ABF,∴AE=AF,∠BAF=∠CAE∵∠BAC=∠BAE+∠CAE=60°∴∠EAF=∠BAE+∠BAF=60°∴△AFE为等边三角形,∴EF=AE,∴AE=BE+BF=BE+CE,即CE+BE=AE;图③中,AE+BE=CE,在EC上截取CF=BE,连接,在等边△ABC中,
AC=AB,∠BAC=60°
由对称可知:AP是CD的垂直平分线,AC=AD,∠EAC=∠EAD,
∴AB=AD,CE=DE,∵AE=AE∴△ACE≌△ADE,∴∠ACE=∠ADE∵AB=AD,∴∠ABD=∠ADB∴∠ABD=∠ADE=∠ACE∵AB=AC,BE=CF,∴△ACF≌△ABE,∴AE=AF,∠BAE=∠CAF∵∠BAC=∠BAF+∠CAF=60°∴∠EAF=∠BAF+∠BAE=60°∴△AFE为等边三角形,∴EF=AE,∴CE=EF+CF=AE+BE,即AE+BE=CE;(3)在(1)的条件下,若,则AE=3,∵CE+AE=BE,∴BE-CE=3,∵BD=BE+ED=BE+CE=6,∴CE=1.1;在(2)的条件下,若,则AE=3,因为图②中,CE+BE=AE,而BD=BE-DE=BE-CE,所以BD不可能等于2AE;图③中,若,则AE=3,∵AE+BE=CE,∴CE-BE=3,∵BD=BE+ED=BE+CE=6,∴CE=4.1.即CE=1.1或4.1.【题目点拨】本题考查几何变换,等边三角形的性质,线段垂直平分线的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.20、见解析【解题分析】分析:根据题目写出已知,求证,证明即可.详解:已知:的三个内角分别为;
求证:.
证明:过点A作直线MN,使MN∥BC.
∵MN∥BC,
∴∠B=∠MAB,∠C=∠NAC(两直线平行,内错角相等)
∵∠MAB+∠NAC+∠BAC=180°(平角定义)
∴∠B+∠C+∠BAC=180°(等量代换)
即∠A+∠B+∠C=180°.点睛:考查平行线的性质,过点A作直线MN,使MN∥BC.是解题的关键.21、(1)见解析;(2)72°【解题分析】(1)作AB的垂直平分线DE;(2)根据等腰三角形的性质计算∠B的度数,根据线段的垂直平分线的性质得AE=BE,可计算∠BAE=36°,由外角性质可得结论.【题目详解】(1)如图所示:则DE是AB的垂直平分线;(2)∵AB=AC,∠BAC=108°,∴∠B=∠C=36°,∵DE是AB的垂直平分线,∴AE=BE,∴∠B=∠BAE=36°,∴∠AEC=∠B+∠BAE=36°+36°=72°.【题目点拨】本题考查了基本作图、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题.22、(1)-6,1;(2)7;(3)见解析【分析】(1)根据题意可知p=x1•x2,q=x1•x2,代入求值即可;(2)方程变形后,利用题中的结论确定出两个解中较大的解即可;(3)方程变形后,根据利用题中的结论表示出为x1、x2,代入原式计算即可得到结果.【题目详解】解:(1)∵关于x的方程有两个解,分别为,,∵方程的两个解分别为、,∴p=x1•x2=-2×3=6;q=x1•x2=-2+3=1
故答案为-6,1.(2)方程变形得:根据题意得:x1=1,x2=7,
则方程较大的一个解为7;故答案为:7(3)∵∴,;∴或,或又∵∴,∴【题目点拨】此题考查了分式方程的解,弄清题中的规律是解本题的关键.23、(1)乙车比甲车晚出发1小时;(2)乙车出发1.5小时后追上甲车;(3)在乙车行驶过程中,当t为1或2时,两车相距20千米.【分析】(1)从图像及题意可直接进行解答;(2)设甲车离开城的距离(千米)与甲车行驶的时间(小时)之间的函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 材料力学与智能材料性能应用拓展重点基础知识点
- 材料疲劳断裂预测研究进展重点基础知识点
- 行政法理论的基本原理试题及答案
- 半地下仓库火灾应急预案(3篇)
- 跨文化管理与经济政策试题及答案
- 消防火灾应急预案预演(3篇)
- 计算机程序开发中的风险评估试题及答案
- 资源分配不公的经济原因探讨试题及答案
- 客房火灾报警应急预案(3篇)
- 2025年法学概论考试的法律思维模式与试题及答案
- GB/T 30516-2014高粘高弹道路沥青
- GB/T 29602-2013固体饮料
- GB/T 23268.1-2009运动保护装备要求第1部分:登山动力绳
- GB/T 12469-1990焊接质量保证钢熔化焊接头的要求和缺陷分级
- 临床血液学检验技术-其他白细胞疾病
- DBJ-T 13-195-2022 烧结煤矸石实心砖和多孔砖(砌块) 应用技术标准
- FZ/T 21009-2015短毛条
- 禾川x3系列伺服说明书
- 电缆井工程及电缆钢管敷设施工方案
- 各种面试方法详解
- 窄线宽光纤激光器研究俞本立
评论
0/150
提交评论