2024届浙江省衢州市江山市八年级数学第一学期期末质量跟踪监视模拟试题含解析_第1页
2024届浙江省衢州市江山市八年级数学第一学期期末质量跟踪监视模拟试题含解析_第2页
2024届浙江省衢州市江山市八年级数学第一学期期末质量跟踪监视模拟试题含解析_第3页
2024届浙江省衢州市江山市八年级数学第一学期期末质量跟踪监视模拟试题含解析_第4页
2024届浙江省衢州市江山市八年级数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省衢州市江山市八年级数学第一学期期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.关于x的方程解为正数,则m的范围为()A. B. C. D.2.计算-3(a-2b)+4(a-2b)的结果是()A.a-2b B.a+2b C.-a-2b D.-a+2b3.现用张铁皮做盒子,每张铁皮做个盒身或做个盒底,而一个盒身与两个盒底配成一个盒子,设用张铁皮做盒身,张铁皮做盒底,则可列方程组为()A. B.C. D.4.某小组长统计组内1人一天在课堂上的发言次数分别为3,3,0,4,1.关于这组数据,下列说法错误的是()A.众数是3 B.中位数是0 C.平均数3 D.方差是2.85.一副三角板如图摆放,则的度数为()A. B. C. D.6.使分式有意义的x的取值范围是()A.x> B.x< C.x≠3 D.x≠7.下列四个手机APP图标中,是轴对称图形的是()A. B. C. D.8.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于G,交BE于H.下列结论:①S△ABE=S△BCE;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.其中所有正确结论的序号是()A.①②③④ B.①②③ C.②④ D.①③9.以下列各组数为边长,能构成直角三角形的是()A.2,3,4 B.3,4,6 C.5,12,13 D.6,7,1110.已知一组数据20、30、40、50、50、50、60、70、80,其中平均数、中位数、众数的大小关系是()A.平均数>中位数>众数 B.平均数<中位数<众数C.中位数<众数<平均数 D.平均数=中位数=众数11.如图,网格中每个小正方形的边长均为1,点A,B,C都在格点上,以A为圆心,AB为半径画弧,交最上方的网格线于点D,则CD的长为()A.5 B.0.8 C. D.12.将下列多项式因式分解,结果中不含有因式(x﹣2)的是()A.x2﹣4 B.x3﹣4x2﹣12xC.x2﹣2x D.(x﹣3)2+2(x﹣3)+1二、填空题(每题4分,共24分)13.已知一个三角形的两边长分别为2和5,第三边的取值范围为______.14.如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形B、C、D的面积依次为4、3、9,则正方形A的面积为_______.15.一个正多边形的每个外角为60°,那么这个正多边形的内角和是_____.16.若,则的值为_________.17.分解因式:________.18.教材上“阅读与思考”曾介绍“杨辉三角”(如图),利用“杨辉三角”展开(1﹣2x)4=a0+a1x+a2x2+a3x3+a4x4,那么a1+a2+a3+a4=_____.三、解答题(共78分)19.(8分)已知:如图,,点是的中点,平分,.(1)求证:;(2)若,试判断的形状,并说明理由.20.(8分)先化简,再求值:,其中.21.(8分)小明骑自行车从甲地到乙地,图中的折线表示小明行驶的路程与所用时间之间的函数关系.试根据函数图像解答下列问题:(1)小明在途中停留了____,小明在停留之前的速度为____;(2)求线段的函数表达式;(3)小明出发1小时后,小华也从甲地沿相同路径匀速向乙地骑行,时,两人同时到达乙地,求为何值时,两人在途中相遇.22.(10分)如图,是等边三角形,为上两点,且,延长至点,使,连接.(1)如图1,当两点重合时,求证:;(2)延长与交于点.①如图2,求证:;②如图3,连接,若,则的面积为______________.23.(10分)如图,,点在上.(1)求证:平分;(2)求证:.24.(10分)(1)因式分解:(2)整式计算:25.(12分)张明和李强两名运动爱好者周末相约到东湖绿道进行跑步锻炼.周日早上6点,张明和李强同时从家出发,分别骑自行车和步行到离家距离分别为4.5千米和1.2千米的绿道落雁岛入口汇合,结果同时到达,且张明每分钟比李强每分钟多行220米,(1)求张明和李强的速度分别是多少米/分?(2)两人到达绿道后约定先跑6千米再休息,李强的跑步速度是张明跑步速度的m倍,两人在同起点,同时出发,结果李强先到目的地n分钟.①当m=12,n=5时,求李强跑了多少分钟?②张明的跑步速度为米/分(直接用含m,n的式子表示).26.在△ABC和△DCE中,CA=CB,CD=CE,∠CAB=∠CED=α.(1)如图1,将AD、EB延长,延长线相交于点0.①求证:BE=AD;②用含α的式子表示∠AOB的度数(直接写出结果);(2)如图2,当α=45°时,连接BD、AE,作CM⊥AE于M点,延长MC与BD交于点N.求证:N是BD的中点.注:第(2)问的解答过程无需注明理由.

参考答案一、选择题(每题4分,共48分)1、B【分析】首先解分式方程,然后令其大于0即可,注意还有.【题目详解】方程两边同乘以,得∴解得且故选:B.【题目点拨】此题主要考查根据分式方程的解求参数的取值范围,熟练掌握,即可解题.2、A【分析】先去括号然后合并同类项即可.【题目详解】原式=-3a+6b+4a-8b=a-2b,故选:A.【题目点拨】本题考查了整式的加减,掌握运算法则是解题关键.3、A【分析】此题中的等量关系有:①共有190张铁皮;②做的盒底数等于盒身数的2倍时才能正好配套.由此可得答案.【题目详解】解:根据共有190张铁皮,得方程x+y=190;根据做的盒底数等于盒身数的2倍时才能正好配套,得方程2×8x=22y.列方程组为.故选:A.【题目点拨】本题考查的是二元一次方程组的应用,找准等量关系是解应用题的关键.4、B【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可【题目详解】A.3,3,0,4,1众数是3,此选项正确;B.

0,3,3,4,1中位数是3,此选项错误;C.

平均数=(3+3+4+1)÷1=3,此选项正确;D.方差S2=[(3−3)2+(3−3)2+(3−0)2+(3−4)2+(3−1)2]=2.8,此选项正确;故选B【题目点拨】本题考查了方差,加权平均数,中位数,众数,熟练掌握他们的概念是解决问题的关键5、C【分析】根据三角板的特点可得∠2和∠3的度数,然后利用三角形内角和定理求出∠1即可解决问题.【题目详解】解:如图,根据三角板的特点可知:∠2=60°,∠3=45°,∴∠1=180°-60°-45°=75°,∴∠α=∠1=75°,故选:C.【题目点拨】本题主要考查了三角形内角和定理,熟知三角形的内角和等于180°是解题的关键.6、D【分析】根据分式有意义的条件是分母不等于零列出不等式,解不等式得到答案.【题目详解】解:由题意得,2x﹣1≠0,解得,x≠,故选:D.【题目点拨】本题考查了分数有意义,解题的关键是掌握分式有意义的条件是:分母不为零.7、B【分析】根据轴对称定义进行判断即可.【题目详解】解:根据轴对称图形的定义:把一个图形沿某一条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫作轴对称图形.由此定义可知,B满足定义条件.故本题正确答案为B.【题目点拨】本题主要考查轴对称图形的定义:把一个图形沿某一条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫作轴对称图形.8、B【分析】根据等底等高的三角形的面积相等即可判断①;根据三角形内角和定理求出∠ABC=∠CAD,根据三角形的外角性质即可推出②;根据三角形内角和定理求出∠FAG=∠ACD,根据角平分线定义即可判断③;根据等腰三角形的判定判断④即可.【题目详解】解:∵BE是中线,

∴AE=CE,

∴S△ABE=S△BCE(等底等高的三角形的面积相等),故①正确;

∵CF是角平分线,

∴∠ACF=∠BCF,

∵AD为高,

∴∠ADC=90°,

∵∠BAC=90°,

∴∠ABC+∠ACB=90°,∠ACB+∠CAD=90°,

∴∠ABC=∠CAD,

∵∠AFG=∠ABC+∠BCF,∠AGF=∠CAD+∠ACF,

∴∠AFG=∠AGF,故②正确;

∵AD为高,

∴∠ADB=90°,

∵∠BAC=90°,

∴∠ABC+∠ACB=90°,∠ABC+∠BAD=90°,

∴∠ACB=∠BAD,

∵CF是∠ACB的平分线,

∴∠ACB=2∠ACF,

∴∠BAD=2∠ACF,

即∠FAG=2∠ACF,故③正确;

根据已知条件不能推出∠HBC=∠HCB,即不能推出BH=CH,故④错误;

故选B.【题目点拨】本题考查了三角形内角和定理,三角形的外角性质,三角形的角平分线、中线、高,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.9、C【分析】根据勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【题目详解】解:A、22+32≠42,不能构成直角三角形,故选项错误;B、32+42≠62,不能构成直角三角形,故选项错误;C、52+122=132,能构成直角三角形,故选项正确;D、62+72≠112,不能构成直角三角形,故选项错误.故选C.【题目点拨】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断是解答此题的关键.10、D【解题分析】从小到大数据排列为20、30、40、1、1、1、60、70、80,1出现了3次,为出现次数最多的数,故众数为1;共9个数据,第5个数为1,故中位数是1;平均数=(20+30+40+1+1+1+60+70+80)÷9=1.∴平均数=中位数=众数.故选D.11、C【分析】连接AD,由勾股定理求出DE,即可得出CD的长.【题目详解】解:如图,连接AD,则AD=AB=3,

由勾股定理可得,Rt△ADE中,DE=,

又∵CE=3,

∴CD=3-,

故选:C.【题目点拨】本题考查了勾股定理的运用,由勾股定理求出DE是解决问题的关键.12、B【题目详解】试题解析:A.x2-4=(x+2)(x-2),含有因式(x-2),不符合题意;B.x3-4x2-12x=x(x+2)(x-6),不含有因式(x-2),正确;C.x2-2x=x(x-2),含有因式(x-2),不符合题意;D.(x-3)2+2(x-3)+1=x2-4x+4=(x-2)2,含有因式(x-2),不符合题意,故选B.二、填空题(每题4分,共24分)13、.【分析】根据三角形三边关系两边之和大于第三边,两边之差小于第三边求解即可.【题目详解】∵一个三角形的两边长分别为2和5,∴第三边x的范围为:,即:.所以答案为.【题目点拨】本题主要考查了三角形三边关系,熟练掌握相关概念是解题关键.14、1【解题分析】根据勾股定理的几何意义:得到S正方形A+S正方形B=S正方形E,S正方形D﹣S正方形C=S正方形E,求解即可.【题目详解】由题意:S正方形A+S正方形B=S正方形E,S正方形D﹣S正方形C=S正方形E,∴S正方形A+S正方形B=S正方形D﹣S正方形C.∵正方形B,C,D的面积依次为4,3,9,∴S正方形A+4=9﹣3,∴S正方形A=1.故答案为1.【题目点拨】本题考查了勾股定理,要熟悉勾股定理的几何意义,知道直角三角形两直角边的平方和等于斜边的平方.15、720°.【解题分析】先利用多边形的外角和为360°计算出这个正多边形的边数,然后再根据内角和公式进行求解即可.【题目详解】这个正多边形的边数为=6,所以这个正多边形的内角和=(6﹣2)×180°=720°,故答案为720°.【题目点拨】本题考查了多边形内角与外角:内角和定理:(n﹣2)•180(n≥3)且n为整数);多边形的外角和等于360度.16、1【分析】根据同底数幂相乘,底数不变,指数相加即可列出方程,求出m的值.【题目详解】解:∵∴∴解得:m=1故答案为:1.【题目点拨】此题考查的是幂的运算性质,掌握同底数幂相乘,底数不变,指数相加是解决此题的关键.17、3(a+b)(a-b)【分析】先提公因式,再利用平方差公式进行二次分解即可.【题目详解】解:3a2-3b2=3(a2-b2)=3(a+b)(a-b).故答案为:3(a+b)(a-b).【题目点拨】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.18、1【分析】令求出的值,再令即可求出所求式子的值.【题目详解】解:令,得:,令,得:,则,故答案为:1.【题目点拨】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.三、解答题(共78分)19、(1)见解析;(2)△ABC为等边三角形【分析】(1)根据三线合一定理,得AD⊥BD,由角平分线的性质定理,得BE=BD,即可得到,即可得到结论;(2)由BE∥AC,则∠EAC=∠E=90°,由角平分线的性质,得到∠EAB=∠BAD=∠CAD=30°,则∠BAC=60°,即可得到答案.【题目详解】(1)证明:如图,∵AB=AC,点D是BC中点∴AD⊥BD∵AB平分∠DAE,AE⊥BE∴BE=BD∴∴AD=AE;(2)解:△ABC为等边三角形∵BE∥AC∴∠EAC=∠E=90°∵AB=AC,AD是中线∴AD平分∠BAC∵AB平分∠DAE∴∠EAB=∠BAD=∠CAD=30°∴∠BAC=∠BAD+∠CAD=60°∵AB=AC∴△ABC是等边三角形.【题目点拨】本题考查了等边三角形的判定和性质,全等三角形的判定和性质,角平分线的性质定理,解题的关键是熟练掌握所学的知识进行解题.20、,1【分析】先根据完全平方公式、平方差公式和单项式乘多项式法则化简原式,再将x的值代入计算可得.【题目详解】解:当x=-2时,原式=24-1=1.【题目点拨】本题主要考查整式的混合运算-化简求值,解题的关键是掌握完全平方公式、平方差公式和单项式乘多项式法则.21、(1)2,10;(2)s=15t-40;(3)t=3h或t=6h.【分析】(1)由图象中的信息可知:小明从第2小时到第4小时行驶的路程没有发生变化,所以途中停留了2;小明2小时内行驶的路程是20km,据此可以求出他的速度;

(2)由图象可知:B(4,20),C(5,35),设线段的函数表达式为s=kt+b,代入后得到方程组,解方程组即可;

(3)先求出从甲地到乙地的总路程,现求小华的速度,然后分三种情况讨论两人在途中相遇问题.当时,10t=10(t-1);当时,20=10(t-1);当时,15t-40=10(t-1);逐一求解即可.【题目详解】解:(1)由图象可知:小明从第2小时到第4小时行驶的路程没有发生变化,所以途中停留了2;由图象可知:小明2小时内行驶的路程是20km,所以他的速度是(km/h);故答案是:2;10.

(2)设线段的函数表达式为s=kt+b,由图象可知:B(4,20),C(5,35),∴,∴,∴线段的函数表达式为s=15t-40;

(3)在s=15t-40中,当t=6时,s=15×6-40=50,∴从甲地到乙地全程为50km,∴小华的速度=(km/h),下面分三种情况讨论两人在途中相遇问题:当时,两人在途中相遇,则10t=10(t-1),方程无解,不合题意,舍去;当时,两人在途中相遇,则20=10(t-1),解得t=3;当时,两人在途中相遇,则15t-40=10(t-1),解得t=6;∴综上所述,当t=3h或t=6h时,两人在途中相遇.【题目点拨】本题考查了一次函数的应用,能够正确理解函数图象横纵坐标表示的意义,解题关键是理解一些关键点的含义,并结合实际问题数量关系进行求解.22、(1)见解析;(1)①见解析;②1.【分析】(1)当D、E两点重合时,则AD=CD,然后由等边三角形的性质可得∠CBD的度数,根据等腰三角形的性质和三角形的外角性质可得∠F的度数,于是可得∠CBD与∠F的关系,进而可得结论;(1)①过点E作EH∥BC交AB于点H,连接BE,如图4,则易得△AHE是等边三角形,根据等边三角形的性质和已知条件可得EH=CF,∠BHE=∠ECF=110°,BH=EC,于是可根据SAS证明△BHE≌△ECF,可得∠EBH=∠FEC,易证△BAE≌△BCD,可得∠ABE=∠CBD,从而有∠FEC=∠CBD,然后根据三角形的内角和定理可得∠BGE=∠BCD,进而可得结论;②易得∠BEG=90°,于是可知△BEF是等腰直角三角形,由30°角的直角三角形的性质和等腰直角三角形的性质易求得BE和BF的长,过点E作EM⊥BF于点F,过点C作CN⊥EF于点N,如图5,则△BEM、△EMF和△CFN都是等腰直角三角形,然后利用等腰直角三角形的性质和30°角的直角三角形的性质可依次求出BM、MC、CF、FN、CN、GN的长,进而可得△GCN也是等腰直角三角形,于是有∠BCG=90°,故所求的△BCG的面积=,而BC和CG可得,问题即得解决.【题目详解】解:(1)∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,当D、E两点重合时,则AD=CD,∴,∵,∴∠F=∠CDF,∵∠F+∠CDF=∠ACB=60°,∴∠F=30°,∴∠CBD=∠F,∴;(1)①∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AB=AC,过点E作EH∥BC交AB于点H,连接BE,如图4,则∠AHE=∠ABC=60°,∠AEH=∠ACB=60°,∴△AHE是等边三角形,∴AH=AE=HE,∴BH=EC,∵,CD=CF,∴EH=CF,又∵∠BHE=∠ECF=110°,∴△BHE≌△ECF(SAS),∴∠EBH=∠FEC,EB=EF,∵BA=BC,∠A=∠ACB=60°,AE=CD,∴△BAE≌△BCD(SAS),∴∠ABE=∠CBD,∴∠FEC=∠CBD,∵∠EDG=∠BDC,∴∠BGE=∠BCD=60°;②∵∠BGE=60°,∠EBD=30°,∴∠BEG=90°,∵EB=EF,∴∠F=∠EBF=45°,∵∠EBG=30°,BG=4,∴EG=1,BE=1,∴BF=,,过点E作EM⊥BF于点F,过点C作CN⊥EF于点N,如图5,则△BEM、△EMF和△CFN都是等腰直角三角形,∴,∵∠ACB=60°,∴∠MEC=30°,∴,∴,,∴,∴,∴,∴∠GCF=90°=∠GCB,∴,∴△BCG的面积=.故答案为:1.【题目点拨】本题考查了等腰三角形与等边三角形的判定和性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、30°角的直角三角形的性质和勾股定理等知识,涉及的知识点多、难度较大,正确添加辅助线、熟练掌握全等三角形的判定与性质是解①题的关键,灵活应用等腰直角三角形的性质和30°角的直角三角形的性质解②题的关键.23、(1)见解析;(2)见解析.【分析】(1)由题中条件易知:△ABC≌△ADC,可得AC平分∠BAD;

(2)利用(1)的结论,可得△BAE≌△DAE,得出BE=DE.【题目详解】解:(1)在与中,∴∴即平分;(2)由(1)在与中,得∴∴【题目点拨】熟练运用三角形全等的判定,得出三角形全等,转化边角关系是解题关键.24、(1)(2).【分析】(1)根据提取公因式与公式法综合即可因式分解;(2)根据整式的运算公式即可求解.【题目详解】(1)==(2)==.【题目点拨】此题主要考查因式分解与整式的乘法运算,解题的关键是熟知因式分解与整式的乘法运算法则.25、(1)李强的速度为80米/分,张明的速度为1米/分.(2)【分析】(1)设李强的速度为x米/分,则张明的速度为(x+220)米/分,根据等量关系:张明和李强所用时间相同,列出方程求解即可;(2)①根据路程一定,时间与速度成反比,可求李强跑了多少分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论