




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市昌平区名校2024届数学八上期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A.
B.
C.
D.2.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是()A.85° B.80° C.75° D.70°3.如图,若圆盘的半径为2,中间有一边长为1的正方形,向圆盘内随机投掷一枚飞镖,则飞镖落在中间正方形内的概率是()A. B. C. D.4.下列各数中为无理数的是()A. B. C. D.5.如图△ABC,AB=7,AC=3,AD是BC边上的中线则AD的取值范围为()A.4<AD<10 B.2<AD<5 C.1<AD< D.无法确定6.两个一次函数与,它们在同一直角坐标系中的图象可能是()A. B.C. D.7.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠38.下列各式从左边到右边的变形,是因式分解的为()A. B.C. D.9.如图,在△ABC,∠C=90°,AD平分∠BAC交CB于点D,过点D作DE⊥AB,垂足恰好是边AB的中点E,若AD=3cm,则BE的长为()A.cm B.4cm C.3cm D.6cm10.如图,在中,是的垂直平分线,,且的周长为,则的周长为()A.24 B.21 C.18 D.16二、填空题(每小题3分,共24分)11.请用“如果…,那么…”的形式写一个命题______________12.甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l甲、l乙分别表示甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶千米.13.当x=__________时,分式的值为零.14.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,若AD=3,BE=1,则DE=_________.15.如图,长方体的长为15厘米,宽为10厘米,高为20厘米,点B到点C的距离是5厘米.一只小虫在长方体表面从A爬到B的最短路程是__________16.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④AE=EC,其中正确的是________(填序号)17.如图直线a,b交于点A,则以点A的坐标为解的方程组是______.18.如图,l∥m,矩形ABCD的顶点B在直线m上,则∠α=_________度.三、解答题(共66分)19.(10分)观察下列等式:①,②,③,④,(1)按此规律完成第⑤个等式:(___________)(_______)(________);(2)写出你猜想的第个等式(用含的式子表示),并证明其正确性.20.(6分)如图1,在平面直角坐标系中,O为坐标原点,点A(8,0).动点P从A出发以每秒2个单位长度的速度沿线段AO向终点O运动,同时动点Q从O出发以相同速度沿y轴正半轴运动,点P到达点O,两点同时停止运动,设运动时间为t.(1)当∠OPQ=45°时,请求出运动时间t;(2)如图2,以PQ为斜边在第一象限作等腰Rt△PQM,设M点坐标为(m,n),请探究m与n的数量关系并说明理由.21.(6分)设,求代数式和的值22.(8分)如图,中,,,为延长线上一点,点在上,且,若,求的度数.23.(8分)已知A、B两点在直线的同侧,试在上找两点C和D(CD的长度为定值),使得AC+CD+DB最短(保留作图痕迹,不要求写画法).24.(8分)某校八年级(1)班甲、乙两男生在5次引体向上测试中有效次数如下:甲:8,8,7,8,9;乙:5,9,7,10,9;甲乙两同学引体向上的平均数、众数、中位数、方差如下:平均数众数中位数方差甲8b80.4乙a9c3.2根据以上信息,回答下列问题:(1)表格是a=,b=,c=.(填数值)(2)体育老师根据这5次的成绩,决定选择甲同学代表班级参加年级引体向上比赛,选择甲的理由是.班主任李老师根据去年比赛的成绩(至少9次才能获奖),决定选择乙同学代表班级参加年级引体向上比赛,选择乙的理由是;(3)如果乙同学再做一次引体向上,有效次数为8,那么乙同学6次引体向上成绩的平均数,中位数,方差.(填“变大”、“变小”或“不变”)25.(10分)因式分解:26.(10分)如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于点A(1,a),点B(b,1),且a、b满足a2-4a+4+=1.(1)求a,b的值;(2)以AB为边作Rt△ABC,点C在直线AB的右侧,且∠ACB=45°,求点C的坐标;(3)若(2)的点C在第四象限(如图2),AC与x轴交于点D,BC与y轴交于点E,连接DE,过点C作CF⊥BC交x轴于点F.①求证:CF=BC;②直接写出点C到DE的距离.
参考答案一、选择题(每小题3分,共30分)1、A【分析】连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.【题目详解】解:连接AM,
∵AB=AC,点M为BC中点,
∴AM⊥CM(三线合一),BM=CM,
∵AB=AC=5,BC=6,
∴BM=CM=3,
在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,
又S△AMC=MN•AC=AM•MC,∴MN==.
故选A.【题目点拨】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.2、A【分析】利用角平分线的性质可得∠ABD=∠ABC=×70°=35°,再根据三角形外角的性质可得∠BDC=∠A+∠ABD=50°+35°=85°.【题目详解】解:∵BD平分∠ABC,∠ABC=70°,∴∠ABD=∠ABC=×70°=35°,∵∠A=50°,∴∠BDC=∠A+∠ABD=50°+35°=85°,故选A.【题目点拨】此题主要考查了角平分线的定义和三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.3、D【分析】根据几何概率的公式,分别求解出圆形的面积和正方形的面积即可.【题目详解】由题:,∴,故选:D.【题目点拨】本题考查几何概率的计算,准确计算各部分面积是解题关键.4、C【分析】无理数就是无限循环小数,依据定义即可作出判断.【题目详解】A.是有理数,不符合题意;B.是有理数,不符合题意;C.是无限不循环小数,是无理数,正确;D.=2是整数,不符合题意;故选:C.【题目点拨】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,6,0.8080080008…(每两个8之间依次多1个0)等形式.5、B【分析】先延长AD到E,且AD=DE,并连接BE,由于∠ADC=∠BDE,AD=DE,利用SAS易证△ADC≌△EDB,从而可得AC=BE,在△ABE中,再利用三角形三边的关系,可得4<AE<10,从而易求2<AD<1.【题目详解】延长AD到E,使AD=DE,连接BE,如图所示:∵AD=DE,∠ADC=∠BDE,BD=DC,∴△ADC≌△EDB(SAS)∴BE=AC=3,在△AEB中,AB-BE<AE<AB+BE,即7-3<2AD<7+3,∴2<AD<1,故选:B.【题目点拨】此题主要考查三角形三边关系:两边之和大于第三边,两边之差小于第三边.6、C【分析】根据函数图象判断a、b的符号,两个函数的图象符号相同即是正确,否则不正确.【题目详解】A、若a>0,b<0,符合,不符合,故不符合题意;B、若a>0,b>0,符合,不符合,故不符合题意;C、若a>0,b<0,符合,符合,故符合题意;D、若a<0,b>0,符合,不符合,故不符合题意;故选:C.【题目点拨】此题考查一次函数的性质,能根据一次函数的解析式y=kx+b中k、b的符号判断函数图象所经过的象限,当k>0时函数图象过一、三象限,k<0时函数图象过二、四象限;当b>0时与y轴正半轴相交,b<0时与y轴负半轴相交.7、C【解题分析】试题解析:分式方程去分母得:m-1=x-1,解得:x=m-2,由方程的解为非负数,得到m-2≥0,且m-2≠1,解得:m≥2且m≠1.故选C.考点:分式方程的解.8、B【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【题目详解】A.,结果不是整式积的形式,故错误;B.,正确;C.,是多项式乘法,不是因式分解,错误;D.,左边是单项式,不是因式分解,错误;故选:B【题目点拨】本题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,然后进行正确的因式分解.9、A【分析】先根据角平分线的性质可证CD=DE,从而根据“HL”证明Rt△ACD≌Rt△AED,由DE为AB中线且DE⊥AB,可求AD=BD=3cm,然后在Rt△BDE中,根据直角三角形的性质即可求出BE的长.【题目详解】∵AD平分∠BAC且∠C=90°,DE⊥AB,∴CD=DE,由AD=AD,所以,Rt△ACD≌Rt△AED,所以,AC=AE.∵E为AB中点,∴AC=AE=AB,所以,∠B=30°.∵DE为AB中线且DE⊥AB,∴AD=BD=3cm,∴DE=BD=,∴BE=cm.故选A.【题目点拨】本题考查了角平分线的性质,线段垂直平分线的性质,全等三角形的判定与性质,含30°角的直角三角形的性质,及勾股定理等知识,熟练掌握全等三角形的判定与性质是解答本题的关键.10、A【分析】根据线段的垂直平分线的性质得到DA=DC,根据三角形的周长公式计算,得到答案.【题目详解】∵DE是AC的垂直平分线,∴DA=DC,∵△ABD的周长为16cm,∴AB+BD+DA=AB+BD+DC=AB+BC=16cm,∴△ABC的周长=AB+BC+AC=16+8=24(cm),故选:A.【题目点拨】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.二、填空题(每小题3分,共24分)11、答案不唯一【解题分析】本题主要考查了命题的定义任何一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.答案不唯一,例如:如果两个角是同位角,那么这两个角相等.12、.【分析】根据函数的图形可以得到甲用了30分钟行驶了12千米,乙用12分钟行驶了12千米,分别算出速度即可求得结果:【题目详解】∵甲每分钟行驶12÷30=(千米),乙每分钟行驶12÷12=1(千米),∴每分钟乙比甲多行驶1-(千米)则每分钟乙比甲多行驶千米故答案为13、-1【分析】根据分式的解为0的条件,即可得到答案.【题目详解】解:∵分式的值为零,∴,解得:,∴;故答案为:.【题目点拨】本题主要考查分式的值为0的条件,由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.14、2【分析】根据余角的性质,可得∠DCA与∠CBE的关系,根据AAS可得△ACD与△CBE的关系,根据全等三角形的性质,可得AD与CE的关系,根据线段的和差,可得答案.【题目详解】∵在△ACD和△CBE中:∴故答案是2.【题目点拨】本题考查了全等三角形的判定余角的性质,解决本题的关键是熟练掌握三角形全等的判定方法.15、25【解题分析】分析:求长方体中两点之间的最短路径,最直接的作法,就是将长方体侧面展开,然后利用两点之间线段最短解答.详解:只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如图1:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5,∴BD=CD+BC=10+5=15cm,AD=20cm,在直角三角形ABD中,根据勾股定理得:∴AB==25cm;只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图2:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5,∴BD=CD+BC=20+5=25cm,AD=10cm,在直角三角形ABD中,根据勾股定理得:∴AB=cm;只要把长方体的右侧表面剪开与后面这个侧面所在的平面形成一个长方形,如图3:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5cm,∴AC=CD+AD=20+10=30cm,在直角三角形ABC中,根据勾股定理得:∴AB=cm;∵25<5<5,∴自A至B在长方体表面的连线距离最短是25cm.故答案为25厘米【点评】此题主要考查平面展开图的最短距离,注意长方体展开图的不同情况,正确利用勾股定理解决问题.16、①②④【分析】易证△ABD≌△EBC,可得可得①②正确,再根据角平分线的性质可求得,即,根据可求得④正确.【题目详解】①BD为△ABC的角平分线,
在△ABD和△EBC中,
△ABD≌△EBC,
①正确;
②BD为△ABC的角平分线,,BD=BC,BE=BA,
△ABD≌△EBC
②正确;③
为等腰三角形,
,
△ABD≌△EBC,
BD为△ABC的角平分线,,而EC不垂直与BC,
③错误;④正确.故答案为:①②④.【题目点拨】本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等性质是解题的关键.17、【分析】首先由图象上的坐标,分别设直线、的解析式,然后将点A坐标代入,求得解析式,即可得解.【题目详解】由图象,直线过点(0,1),设解析式为,直线过点(3,0)(0,3),设解析式为,将点A(1,2)代入,得直线解析式为:直线解析式为:∵点A是两直线的交点∴点A的坐标可以看作方程组的解,故答案为:.【题目点拨】此题主要考查一次函数与二元一次方程组的应用,熟练掌握,即可解题.18、25°.【解题分析】试题分析:延长DC交直线m于E.∵l∥m,∴∠CEB=65°.在Rt△BCE中,∠BCE=90°,∠CEB=65°,∴∠α=90°﹣∠CEB=90°﹣65°=25°.考点:①矩形的性质;②平行线的性质;③三角形内角和定理.三、解答题(共66分)19、(1),,;(2),证明见解析【分析】(1)根据所给式子发现规律,第一个式子的左边分母为1,第二个式子的左边分母为2,…第五个式子的左边分母为5;右边第一个分数的分母为2,3,4,…第五个则为6,另一个分数的分母为前面两个分母的乘积;所有的分子均为1;(2)由(1)的规律发现第n个式子为,利用分式的加减证明即可.【题目详解】(1)故答案为:,,;(2)由规律可得:第个等式(用含的式子表示)为:,右边,左边右边,即.【题目点拨】此题考查数字的变化规律,关键是通过观察,分析、归纳发现其中各分母的变化规律,并应用发现的规律解决问题.20、(1)当∠OPQ=45°时,运动时间为2秒;(2);理由见解析.【分析】(1)先由运动知,OP=8-2t,OQ=2t,根据等腰直角三角形的性质即可结论;
(2)先判断出△MCQ≌△MBP,得出CQ=BP,MC=MB,即可得出点M的纵横坐标相等,即可得出结论.【题目详解】(1)由题意可知,AP=2t,OQ=2t,∵A(8,0),OA=8,∴,∴OP=,在Rt△POQ中,∵∠POQ=90°,∠OPQ=45°,∴∠OQP=45°∴OP=OQ,∴,∴,∴当∠OPQ=45°时,运动时间为2秒;(2).理由:如图,过点M作MB⊥x轴于B,作MC⊥y轴于C,则MC=m,MB=n.∵MB⊥x轴,MC⊥y轴,∴∠MBP=∠MCQ=90°.∵∠POQ=90°,∴∠BMC=90°,∵△PMQ是等腰直角三角形,∴MQ=MP,∠PMQ=90°,∴∠CMQ=∠BMP,在△MCQ和△MBP中,,∴△MCQ≌△MBP(AAS),∴MC=MB,∴.【题目点拨】本题主要考查了坐标与图形,等腰直角三角形的性质,全等三角形的判定和性质,解本题关键是作出辅助线,构造全等三角形解决问题,21、;【分析】直接将代入,再分母有理化即可;先求得,的值,再将变形为,的形式即可求解.【题目详解】;∵,,∴.【题目点拨】本题考查了二次根式的混合运算,涉及的知识点有分母有理化、完全平方公式的应用、平方差公式的应用,熟练掌握二次根式的运算法则和完全平方公式的结构特征是解题的关键.22、65°.【分析】先运用等腰直角三角形性质求出,再用定理可直接证明,进而可得;由即可解决问题.【题目详解】证明:,,,∵,∴在与中,,.;.【题目点拨】该题主要考查了全等三角形的判定及其性质的应用问题;准确找出图形中隐含的相等或全等关系是解题的关键.23、作图见解析.【解题分析】先作出点B关于I的对称点B′,A点向右平移到E(平移的长度为定值a),再连接EB′,与l交于D,再作AC∥EB′,与l交于C,即可确定点D、C.【题目详解】解:作图如下:24、(1)a、b、c的值分别是8、8、9;(2)甲的方差较小,比较稳定;乙的中位数是9,众数是9,获奖次数较多;(3)不变;变小;变小.【分析】(1)根据平均数,中位数和方差的概念计算即可得出答案;(2)通过对比甲,乙两同学的方差,中位数和众数即可得出答案;(3)首先计算乙同学之后的平均数,中位数和方差,然后与之前的进行比较即可得出答案.【题目详解】(1),因为甲中8共出现3次,次数最多,所以b=8因为乙的有效次数中按顺序排列后处于中间位置的是9,所以中位数c=9;故答案为a、b、c的值分别是8、8、9;(2),∴甲的方差较小,成绩比较稳定,∴选择甲同学代表班级参加年级引体向上比赛;∵乙的中位数是9,众数也是9,∴获奖可能性较大,∴根据去年比赛的成绩(至少9次才能获奖),决定选择乙同学代表班级参加年级引体向上比赛;(3)∵原来的平均数是8,增加一次也是8,∴平均数不变.∵六次成绩排序为5,7,8,9,9,10,∴处于中间位置的数为8,9,∴中位数为,∴中位数变小.后来的方差为,∴方差变小.【题目点拨】本题主要考查数据的分析,掌握平均数,中位数,众数和方差的概念是解题的关键.25、【分析】先提公因式,然后利用完全平方公式进行分解因式,即可得到答案.【题目详解】解:==;【题目点拨】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.26、(2)a=2,b=-2;(2)满足条件的点C(2,2)或(2,-2);(3)①证明见解析;②2.【分析】(2)可得(a−2)2+=2,由非负数的性质可得出答案;
(2)分两种情况:∠BAC=92°或∠ABC=92°,根据等腰直角三角形的性质及全等三角形的性质可求出点C的坐标;
(3)①如图3,过点C作CL⊥y轴于点L,则CL=2=BO,根据AAS可证明△BOE≌△CLE,得出BE=CE,根据ASA可证明△ABE≌△BCF,得出BE=CF,则结论得证;
②如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H,根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 法学概论学习中的情绪管理策略试题及答案
- 2025年VB考试访谈及试题及答案分析
- 2025年网络管理员强化练习试题及答案
- 2025年山东省房屋租赁合同范本
- 网络协议分析工具试题与答案
- 战略调整下的年度工作变革计划
- 生产计划中风险管理
- 2025关于病假期间解除劳动合同的赔偿协议
- 2024年四川省水利厅下属事业单位真题
- 设备制造的能效优化与评价考核试卷
- 产业研究报告-中国水环境监测行业发展现状、市场规模及投资前景分析(智研咨询)
- 偿二代下我国财险公司偿付能力影响因素的深度剖析与实证研究
- 清代文学教案
- 2025-2030中国手机充电器行业市场发展现状及竞争策略与投资前景研究报告
- 【计算题分类训练】2025年中考数学计算题型精练系列【运算·训练】(全国)专题1 实数运算(解析版)
- 《维护劳动者权益》课件
- 广东省广州市2025届高三毕业班综合测试语文二模作文讲评(二):完成筑基完美添彩
- 小学课件培训:AI赋能教育创新
- 智慧工地考试试题及答案
- 挂账协议合同模板
- 动火作业施工方案
评论
0/150
提交评论