




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
22.1概率
在一定条件下必然要发生的事件.
比如:“导体通电时发热”,“抛一石块,下落”都是必然事件.再如,“在灯光的照射下,物体会留下影子”.必然事件在一定条件下不可能发生的事件.
比如:“在常温下,铁能熔化”,“在标准大气压下且温度低于0℃时,冰融化”,再如,“掷一枚骰子,正面向上数字为7”,都是不可能事件.
不可能事件在一定条件下可能发生也可能不发生的事件.
比如“李强射击一次,中十环”,“掷一枚硬币,出现反面”都是随机事件.
件事机随例1判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?(1)“抛一石块,下落”.(2)“在标准大气压下且温度低于0℃时,冰融化”;(3)“某人射击一次,中靶”;(4)“如果a>b,那么a-b>0”;(5)“掷一枚硬币,出现正面”;(6)“导体通电后,发热”;(7)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”;(8)“某电话机在1分钟内收到2次呼叫”;(9)“没有水份,种子能发芽”;(10)“在常温下,焊锡熔化”.答:根据定义,事件(1)、(4)、(6)是必然事件;事件(2)、(9)、(10)是不可能事件;事件(3)、(5)、(7)、(8)是随机事件守株待兔随机事件发生的可能性究竟有多大?开始抛硬币(1)抛掷一枚均匀的硬币,有几种可能呢?(2)这两个随机事件的可能性各是多少呢?正面向上反面向上对这个问题,你的直觉是两个可能性相等吗?试验者抛掷次数n“正面向上”次数m“正面向上”频率m/n棣莫弗204810610.518布丰404020480.5069费勒1000049790.4979皮尔逊1200060190.5016皮尔逊24000120120.5005随着抛掷次数的增加,“正面向上”的频率的变化趋势有何规律?仔细看一看
一般地,在大量重复试验中,如果事件A发生的频率稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p.事件一般用大写英文字母A,B,C,D...表示因为在n次试验中,事件A发生的频数m满足0≤
m≤n
,所以0≤≤1
,进而可知频率m/n所稳定到的常数p满足0≤p≤1,因此0≤P(A)≤1议一议:p的取值范围动脑想一想1、当A是必然发生的事件时,P(A)是多少2、当A是不可能发生的事件时,P(A)是多少
当A是必然发生的事件时,在n次实验中,事件A发生的频数m=n,相应的频率=1,随着n的增加频率始终稳定地为1,因此P(A)=1.P(A)=001事件发生的可能性越来越大事件发生的可能性越来越小不可能发生必然发生概率的值
事件发生的可能性越大,则它的概率越接近1;事件发生的可能性越小,则它的概率越接近0.
从上面可知,概率是通过大量重复试验中频率的稳定性得到的一个0-1的常数,它反映了事件发生的可能性的大小.需要注意,概率是针对大量试验而言的,大量试验反映的规律并非在每次试验中一定存在.说明降水概率90%
人们用概率描叙事件发生的可能性的大小。例如,天气预报说明天的降水概率为90%,就意味着明天有很大可能下雨(雪)。问题(1)如何理解“今天北京的降水概率是60%,上海的降水概率是70%”?有没有可能“北京今天降雨了,而上海没有降雨”?请从概率的角度做出解释?(2)据报道:我过1998年的洪水是“百年一遇”的大洪水,在这里“百年一遇”是什么意思?(3)买一张体育彩票中特等奖的概率约为1/8000000,为什么还有那么多人去买彩票?你能从概率的角度回答这些问题吗?例1:有人说,既然抛掷一枚硬币出现正面的为0.5,那么连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上,你认为这种想法正确吗?答:这种说法是错误的,抛掷一枚硬币出现正面的概率为0.5,它是大量试验得出的一种规律性结果,对具体的几次试验来讲不一定能体现出这种规律性,在连续抛掷一枚硬币两次的试验中,可能两次均正面向上,也可能两次均反面向上,也可能一次正面向上,一次反面向上例2:若某种彩票准备发行1000万张,其中有1万张可以中奖,则买一张这种彩票的中奖概率是多少?买1000张的话是否一定会中奖?答:不一定中奖,因为买彩票是随机的,每张彩票都可能中奖也可能不中奖。买彩票中奖的概率为1/1000,是指试验次数相当大,即随着购买彩票的张数的增加,大约有1/1000的彩票中奖。例3:在一场乒乓球比赛前,裁判员利用抽签器来决定由谁先发球,请用概率的知识解释其公平性。分析:这个规则是公平的,因为每个运动员先发球的概率为0.5,即每个运动员取得先发球权的概率是0.5。解:这个规则是公平的,因为抽签上抛后,红圈朝上与绿圈朝上的概率均是0.5,因此任何一名运动员猜中的概率都是0.5,也就是每个运动员取得先发球权的概率都是0.5。1当A是必然发生的事件时,P(A)=-------------------。当B是不可能发生的事件时,P(B)=---------------。当C是随机事件时,P(C)的范围是-----------------------。2投掷一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 时装店入门知识培训方案课件
- 合同管理模板包含风险评估与条款审查功能
- 蓝色科技人工智能日常运用
- 人教版三年级上册第六单元6.1.2《几分之几》课时练(含答案)
- 绿色简约手绘环保公益讲座
- 商业照明设计与安装合同书
- 如何理解诗经中的情感表达:高中诗歌教学计划
- 纪念白求恩李红玲课件
- 企业品牌推广与宣传方案制作工具包
- 2025年软件测试设计师全国计算机技术与软件专业技术资格(水平)考试试卷
- 定向增发业务培训
- 2025年内河船员考试(船舶辅机与电气2203·一类三管轮)历年参考题库含答案详解(5套)
- 农村土地确权课件
- 餐饮店长转正汇报
- 2025年贵州省中考语文试卷(含答案与解析)
- 2025年昆山校医考试题库
- 2024年黔西南州畅达交通建设运输有限责任公司招聘考试真题
- 2025年云南高考历史试卷解读及备考策略指导课件
- 2025至2030中国纤维素纳米纤维(CNF)行业项目调研及市场前景预测评估报告
- (高清版)T∕CES 243-2023 《构网型储能系统并网技术规范》
- 公共场所卫生管理员安全教育培训手册
评论
0/150
提交评论