付费下载
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一种基于生成对抗网络的火焰图像场景迁移新方法Abstract:Withthedevelopmentofdeeplearningtechnology,imagestyletransferhasbecomeanimportantresearcharea.Flameimagescenetransferhasgreatresearchsignificanceandpracticalvalue.Inthispaperweproposeanewmethodbasedongenerativeadversarialnetwork(GAN)forflameimagescenetransfer.Thismethodconsistsofamultiscalegeneratorandadiscriminator.Thegeneratorisdesignedwithskipconnectionarchitecturetotransfertheflameimagestyletothetargetimagewhilepreservingthestructuraldetails.Thediscriminatorisusedtodistinguishthegeneratedimagefromtherealimageandguidethegeneratortoproducemorerealisticimages.Experimentsshowthatourmethodcaneffectivelytransfertheflameimagestyletothetargetimageandachieveagoodvisualeffect.nscenetransferistheprocessoftransferringtheflameimagestyletoatargetimagewhilemaintainingthestructuraldetailsofthetargetimageIthaswideapplicationsinmoviespecialeffects,videogamesandvirtualreality.WiththedevelopmentofdeeplearningtechnologyimagestyletransferhasbecomeanimportantresearchareaTraditionalmethodsofimagestyletransfermainlyrelyontexturesynthesiswhichistime-consumingandcomputationallyexpensive.Inrecentyearsgenerativeadversarialnetworks(GANs)haveemergedasapromisingmethodforimagestyletransfer.InthispaperweproposeanewmethodbasedonGANforflameimagescenetransferOurmethodisdesignedwithamulti-scalegeneratorandadiscriminatorwhichcaneffectivelytransfertheflameimagestyletothetargetimageandachieveagoodvisualeffect.agestyletransferhasbeenextensivelystudiedinrecentyearsGatysetalproposedaneuralalgorithmforimagestyletransfer,whichusestheGrammatrixoffeaturemapstorepresenttheimagestyleandoptimizethecontentandstyleseparately.However,thismethodiscomputationallyexpensiveandcannothandlelargeimages.Johnsonetalproposedafastneuralstyletransfermethod,whichusesapre-traineddeepconvolutionalneuralnetworktotransferthestyleofanimagetootherimages.However,thismethodisalsolimitedbythesizeoftheinputimageTosolvetheseproblems,severalGAN-basedmethodshavebeenproposedforimagestyletransfer.GANsconsistofageneratorandadiscriminatorThegeneratoristrainedtogeneraterealisticimages,whilethediscriminatoristrainedtodistinguishthegeneratedimagesfromtherealones.GAN-basedmethodshaveshowngreatsuccessinimagestyletransfer.Isolaetal.proposedaconditionalGANforimage-to-imagetranslation,whichcantransfervariousimagestyles,suchaschangingtheseasonofalandscapeimageortransferringthestyleofanimagefromdaytonight.InthispaperweproposeanewmethodbasedonGANforflameimagescenetransferOurmethodconsistsofamulti-scalegeneratorandadiscriminatorThegeneratorisdesignedwithskip-connectionarchitecturetotransfertheflameimagestyletothetargetimagewhilepreservingthestructuraldetails.Thediscriminatorisusedtodistinguishthegeneratedimagefromtherealimageandguidethegeneratortoproducemorerealisticimages.ThearchitectureofourgeneratorisshowninFigure1.Ourgeneratortakesthetargetimageasinputandoutputsthegeneratedimagewiththeflameimagestyle.Thegeneratorconsistsofanencoder,adecoderandskipconnectionsbetweencorrespondinglayersintheencoderanddecoderTheencoderofourgeneratorisdesignedwithamultiscalearchitecturetocapturethefeaturesatdifferentscales.Thedecoderofourgeneratorisdesignedwithadeconvolutionalarchitecturetoupsamplethefeaturesandgeneratethetargetimagewiththeflameimagestyle.ThearchitectureofourdiscriminatorisshowninFigure2.Ourdiscriminatortakesthegeneratedimageandtherealimageasinputandoutputsabinaryclassificationresultindicatingwhethertheinputimageisrealorfake.Thediscriminatorconsistsofmultipleconvolutionallayersfollowedbyafullyconnectedlayer.Theoutputofthediscriminatorisascalarvalue,whichrepresentstheprobabilityoftheinputimagebeingreal.TotrainourGANmodel,wedefinethefollowinglossfunctions:AdversariallossTheadversariallossisusedtotrainthediscriminatortodistinguishthegeneratedimagefromtherealimageandtrainthegeneratortogeneratemorerealisticimages.ThedversariallossisdefinedasLadvElogDrealElogDG(target)))]WhereDdenotesthediscriminatorandGdenotesthegenerator.ContentlossThecontentlossisusedtomeasurethesimilaritybetweenthegeneratedimageandthetargetimageintermsofcontent.Thecontentlossisdefinedas:L_content=||G(target)-target||1StylelossThestylelossisusedtomeasurethesimilaritybetweenthegeneratedimageandtheflameimageintermsofstyle.Thestylelossisdefinedas:LstyleGramGflameGramGtargetWhereGramdenotestheGrammatrixoffeaturemaps.ThetotallossofourGANmodelis:LadvLadvcontentLcontentλ_style*L_styleWhereλ_adv,λ_content,andλ_stylearehyperparameters.WeevaluateourmethodontheCIFAR-10dataset,whichcontains00trainingimagesand10,000testingimages.Werandomlyselect0testingimagesasourtargetimagesandusetheflameimagefromtheinternetasourflameimage.WetrainourGANmodelontheremainingimagesandtestitonthetestingset.TheresultsofourmethodareshowninFigure3.OurmethodcaneffectivelytransfertheflameimagestyletothetargetimageandmaintainthestructuraldetailsofthetargetimageThegeneratedimagesarevisuallypleasingandhaveagoodlevelofrealism.WecompareourmethodwiththeneuralalgorithmforimagestyletransferproposedbyGatysetal.andthefastneuralstyletransfermethodproposedbyJoh
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年新余燃气有限公司投资开发岗面向校园公开招聘备考题库及一套完整答案详解
- CN110810157A 一种工业大麻的育苗方法 (云南素麻生物科技有限公司)
- CN110200953B 大麻素在制备吸入给药药物中的应用 (汉义生物科技(北京)有限公司)
- G通信技术在工业领域的应用前景
- 光伏电表过户协议书
- 上海小区物业服务协议书
- 20XX年公司总经理年终总结报告与工作计划
- 企业安全培训学习方案课件
- 呼吸系统疾病患者的健康教育
- 护理安全用药用药时间
- AI对抗性攻击防御机制
- 语文小学二年级上册期末培优试卷测试题(带答案)
- DRBFM的展开详细解读2
- 四环素的发酵工艺课件
- 中山大学研究生因公临时出国境申报表
- 泥浆护壁钻孔灌注桩的施工
- 征信调研报告3篇
- YY/T 0127.18-2016口腔医疗器械生物学评价第18部分:牙本质屏障细胞毒性试验
- GB/T 8924-2005纤维增强塑料燃烧性能试验方法氧指数法
- GB/T 20969.2-2021特殊环境条件高原机械第2部分:高原对工程机械的要求
- 马克思主义经典著作导读课后练习试题答案与解析搜集
评论
0/150
提交评论