一次函数(第2课时)_第1页
一次函数(第2课时)_第2页
一次函数(第2课时)_第3页
一次函数(第2课时)_第4页
一次函数(第2课时)_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.2一次函数第2课时一、教学目标【知识与技能】使学生理解函数y=kx+b(k≠0)与函数y=kx(k≠0)图象之间的关系,会利用两个合适的点画出一次函数的图象,掌握k的正负对图象变化趋势和函数性质的影响.【过程与方法】通过从具体的一次函数的图象特征抽象得到一般形式一次函数的图象特征,进而得到函数的性质,使学生经历从特殊到一般的研究问题的过程,体会从特殊到一般的研究问题的方法.【情感态度与价值观】在探究一次函数的图象和性质的活动中,通过动手实践,互相交流,使学生在探究的过程中,提高与他人交流合作的意识,提高学生的动手实践的能力和探究精神.二、课型新授课三、课时第2课时共4课时四、教学重难点【教学重点】 一次函数的图象和性质.【教学难点】 一次函数性质的理解.五、课前准备 教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2)教师问:我们最快捷、最正确地画出正比例函数的图象时,通常在直角坐标系中选取哪两个点?学生答:画正比例函数y=kx(k≠0)的图象,一般地,过原点和点(1,k).教师问:你能用这种方法作出一次函数的图象吗?这是今天我们学习的内容!(二)探索新知1.出示课件48,探究一次函数的图象教师问:正比例函数与一次函数有何关系?学生回忆并回答:一次函数y=kx+b(k≠0),当b=0时,一次函数则为正比例函数y=kx,因此,正比例函数是当常数项b=0时的一次函数,是特殊的一次函数.教师问:正比例函数的图象是什么图形?如何简便地画出正比例函数的图象?为什么?学生回忆思考并回答:正比例函数的图象是一条经过原点的直线.根据两点确定一条直线,只要确定直线上的两个点即可画出正比例函数的图象.教师问:正比例函数有何性质?这些性质是由什么确定的?师生总结:当k>0时,直线y=kx经过第一、三象限,从左向右上升,即y随x的增大而增大;当k<0时,直线y=kx经过第二、四象限,从左向右下降,即y随x的增大而减小.教师问:在同一坐标系内,画出函数y=6x与y=6x+5的图象.师生一起解答:列表:x21012y=6x1260612y=6x+51711517描点、连线:教师问:比较上面两个函数图象的相同点与不同点.填出你的观察结果并与同伴交流.学生答:这两个函数的图象形状都是一条直线,并且倾斜程度相同.函数y=6x的图象经过原点,函数y=6x+5的图象与y轴交于点(0,5),即它可以看作由直线y=6x向上平移5个单位长度得到.教师问:(1)画一次函数y=2x3的图象.学生答:列表:x…21012…y…75311…描点、连线:教师问:(2)在同一坐标系内画正比例函数y=2x的图象.学生答:如下图:教师问:比较上面两个函数的图象回答下列问题:教师依次展示问题:(1)这两个函数的图象形状都是______,并且倾斜程度______.学生答:一条直线,相同(2)函数y=2x的图象经过_______,函数y=2x3的图像与y轴交于点(_______),即它可以看作由直线y=2x向___平移___个单位长度而得到.学生答:原点,(0,3),下,3(3)在同一直角坐标系中,直线y=2x3与y=2x的位置关系是________.学生答:平行.教师总结点拨:(出示课件8)一次函数y=kx+b(k≠0)的图象经过点(0,b),可以由正比例函数y=kx的图象平移b个单位长度得到(当b>0时,向上平移;当b<0时,向下平移).教师问:一次函数y=kx+b(k≠0)与x轴的交点坐标是什么?学生答:(bk,0).教师问:怎样画一次函数的图象最简单?为什么?学生答:由于两点确定一条直线,画一次函数图象时我们只需描点(0,b)和点(bk,0)或(1,k+b),连线即可考点1:画一次函数的图象用你认为最简单的方法画出下列函数的图象:(1)y=2x1;(2)y=0.5x+1.(出示课件9)师生共同讨论解答如下:解:列表:x01y=2x113y=x+111.5描点、连线:教师强调:也可以先画直线y=2x与y=0.5x,再分别平移它们,也能得到直线y=2x1与y=0.5x+1.出示课件10,学生自主练习后口答,教师订正.2.出示课件1112,探究一次函数的性质教师问:画出函数y=x+1,y=x+1,y=2x+1,y=2x+1的图象.

学生答:列表:x01y=x+112y=x+110y=2x+113y=2x+111描点、连线:教师问:观察函数y=x+1,y=x+1,y=2x+1,y=2x+1的图象.一次函数y=kx+b(k、b是常数,k≠0)中,k的正、负对函数图象有什么影响?师生总结:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.考点1:利用一次函数的性质比较大小P1(x1,y1),P2(x2,y2)是一次函数y=0.5x+3图象上的两点,下列判断中,正确的是()(出示课件13)1>y21<x2时,y1<y2B.y1<y21<x2时,y1>y2学生独立思考后,师生共同解答.解析:因为<0,所以y随x增大而减小.故选:D.教师强调:反过来也成立:y越大,x就越小.出示课件14,学生自主练习后口答,教师订正.3.出示课件1516,探究一次函数经过象限与字母k,b的关系教师问:根据一次函数的图象判断k,b的正负:教师依次展示学生答案:学生1回答:(1)b>0,k>0.学生2回答:(2)b=0,k>0.学生3回答:(3)b<0,k>0.学生4回答:(4)b>0,k<0.学生5回答:(5)b=0,k<0.学生6回答:(6)b<0,k<0.教师问:根据上面一次函数的图象说出直线经过的象限:教师依次展示学生答案:学生1回答:(1)经过第一、二、三象限.学生2回答:(2)经过第一、三象限.学生3回答:(3)经过第一、三、四象限.学生4回答:(4)经过第一、二、四象限.学生5回答:(5)经过第二、四象限.学生6回答:(6)经过第二、三、四象限.教师问:一次函数y=kx+b中,k,b的正负对函数图象及性质有什么影响?教师依次展示学生答案:学生1回答:当k>0时,直线y=kx+b由左到右逐渐上升,y随x的增大而增大.①b>0时,直线经过第一、二、三象限;②b<0时,直线经过第一、三、四象限.学生2回答:当k<0时,直线y=kx+b由左到右逐渐下降,y随x的增大而减小.①b>0时,直线经过第一、二、四象限;②b<0时,直线经过第二、三、四象限.考点1:利用一次函数的性质求字母的值已知一次函数y=(12m)x+m1,求满足下列条件的m的值:(1)函数值y随x的增大而增大;(2)函数图象与y轴的负半轴相交;(3)函数的图象过第二、三、四象限.(出示课件17)学生独立思考后,师生共同解答.解:(1)由题意得12m>0,解得m<1(2)由题意得12m≠0且m1<0,即m<1且m≠12(3)由题意得12m<0且m1<0,解得12<出示课件18,学生自主练习,教师给出答案.(三)课堂练习(出示课件2024)练习课件第2024页题目,约用时20分钟.(四)课堂小结(出示课件25)一次函数y=kx+b(k≠0)图象画一次函数图象时我们只需描点(0,b)和点(bk,0)或(1,k+b)k>0k<0b>0b=0b<0b>0b=0b<0图象是自左向右上升的图象是自左向右下降的经过第一、二、三象限经过第一、三象限经过第一、三、四象限经过第一、二、四象限经过第二、四象限经过第二、三、四象限|k|越大,图象越陡(即越靠近y轴)性质y随x的增大而增大y随x的增大而减小图象平移一次函数y=kx+b的图象可以由正比例函数y=kx的图象平移|b|个单位长度得到(当b>0时,向__上平移;当b<0时,向下平移)(五)课前预习预习下节课(.2第3课时)的相关内容.知道利用待定系数法求一次函数解析式的步骤.七、课后作业1、教材第93页练习第1,2,3题.2、七彩课堂第130131页第2、4、9题.八、板书设计一次函数第2课时1.一次函数的图象考点12.一次函数的性质考点13.一次函数经过象限与字母k,b的关系考点13.例题讲解九、教学反思成功之处:本课教学内容的本质是通过研究具体一次函数的图象特征和函数性质,抽象得到一般的一次函数的图象特征和函数性质,在这个过程中使学生认识到由具体到一般的研究问题的方法.同时在学生了解了正比例函数y=kx的图象和性质的基础上,通过比较一次函数y=kx+b与正比例函数y=kx解析式上的区别,得到一次函数图象与正比例函数图象之间的关系,进而得到一次函数的图象和性质,也使学生体会到当两个函数有密切联系时,通过类比以前研究函数的方法来研究新的函数.在“观察图象——分析解析式——归纳结论”的过程中,培养学生的数形结合的能力.不足之处:八年级的学生是好奇、好学、好动的,但

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论