版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
...wd......wd......wd...第一学期高等数学期末考试试卷答案一.计算题〔此题总分值35分,共有5道小题,每道小题7分〕,1.求极限.解:.2.设时,与是等价无穷小,与等价无穷小,求常数与.解:由于当时,与等价无穷小,所以.而所以,.因此,.3.如果不定积分中不含有对数函数,求常数与应满足的条件.解:将化为局局部式,有,因此不定积分中不含有对数函数的充分必要条件是上式中的待定系数.即.所以,有.比拟上式两端的系数,有.所以,得.5.计算定积分.解:.所以,.5.设曲线的极坐标方程为,求曲线的全长.解:曲线一周的定义域为,即.因此曲线的全长为.二.〔此题总分值45分,共有5道小题,每道小题9分〕,6.求出函数的所有连续点,并指出这些连续点的类型.解:.因此与是函数的连续点.,,因此是函数的第一类可去型连续点.,,因此是函数的第一类可去型连续点.7.设是函数在区间上使用Lagrange〔拉格朗日〕中值定理中的“中值〞,求极限.解:在区间上应用Lagrange中值定理,知存在,使得.所以,.因此,令,则有所以,.8.设,求.解:在方程中,令,得.再在方程两端对求导,得,因此,.9.研究方程在区间内实根的个数.解:设函数,.令,得函数的驻点.由于,所以,.因此,得函数的性态⑴假设,即时,函数在、、内各有一个零点,即方程在内有3个实根.⑵假设,即时,函数在、内各有一个零点,即方程在内有2个实根.⑶假设,即时,函数在有一个零点,即方程在内有1个实根.10.设函数可导,且满足,.试求函数的极值.解:在方程中令,得,即.在方程组中消去,得.积分,注意,得.即.由得函数的驻点.而.所以,,.所以,是函数极小值;是函数极大值.三.应用题与证明题〔此题总分值20分,共有2道小题,每道小题10分〕,11.求曲线的一条切线,使得该曲线与切线及直线和所围成的图形绕轴旋转的旋转体的体积为最小.解:设切点坐标为,由,可知曲线在处的切线方程为,或.因此所求旋转体的体积为所以,.得驻点,舍去.由于,因而函数在处到达极小值,而且也是最小值.因此所求切线方程为.12.设函数在闭区间上连续,在开区间内可导,且,.证明:至少存在一点,使得.解:因为在闭区间上连续,所以由积分中值定理,知存在,使得.由于,所以,.再
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基建类财务管理制度(3篇)
- 执法部门因管理制度(3篇)
- 2026北京人民邮电出版社校园招聘备考考试题库及答案解析
- 护理信息技术应用实训课件
- 2026湖北荆州市荆州区事业单位人才引进57人备考考试题库及答案解析
- 2026广东珠海市妇幼保健院(珠海市妇女儿童医院)、华南理工大学附属珠海妇儿医院面向应届毕业生招聘事业单位人员2人备考考试试题及答案解析
- 2026贵州贵阳市息烽县卫生健康局公益性岗位招聘2人参考考试题库及答案解析
- 右手机器绞伤的紧急处理方法
- 2026福建福州市水路运输应急保障中心编外人员招聘1人参考考试题库及答案解析
- 2026山东济宁市邹城市教体系统急需紧缺人才招聘70人参考考试题库及答案解析
- 2025四川省土地租赁合同范本
- GB/T 5709-2025纺织品非织造布术语
- 光伏发电项目风险
- 企业微信使用手册
- 绿化养护验收实施方案1
- 2024年理财行业高质量发展白皮书-农银理财
- 危险化学品经营单位(安全生产管理人员)考试题及答案
- UL498标准中文版-2019插头插座UL标准中文版
- 《非物质文化遗产》课程教学大纲
- 小学英语名师工作室工作总结
- 居民自建桩安装告知书回执
评论
0/150
提交评论