版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年安徽省六安中学数学高二上期末学业水平测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若数列的前项和,则此数列是()A.等差数列 B.等比数列C.等差数列或等比数列 D.以上说法均不对2.沙糖桔网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是()A.月收入的最大值为90万元,最小值为30万元 B.这一年的总利润超过400万元C.这12个月利润的中位数与众数均为30 D.7月份的利润最大3.已知两直线方程分别为l1:x+y=1,l2:ax+2y=0,若l1⊥l2,则a=()A2 B.-2C. D.4.学校为了解学生在课外读物方面的支出情况,抽取了n位同学进行调查,结果显示这些同学的支出都在(单位:元)内,其中支出在(单位:元)内的同学有67人,其频率分布直方图如图所示,则n的值为()A.100 B.120C.130 D.3905.中,三边长之比为,则为()A.锐角三角形 B.直角三角形C.钝角三角形 D.不存在这样的三角形6.已如双曲线(,)的左、右焦点分别为,,过的直线交双曲线的右支于A,B两点,若,且,则该双曲线的离心率为()A. B.C. D.7.数学家欧拉在1765年发现,任意三角形的外心、重心、垂心位于同一条直线上,这条直线称为欧拉线.已知的顶点,,若其欧拉线的方程为,则顶点的坐标为()A. B.C. D.8.已知为等腰直角三角形的直角顶点,以为旋转轴旋转一周得到几何体,是底面圆上的弦,为等边三角形,则异面直线与所成角的余弦值为()A. B.C. D.9.若直线的一个方向向量为,直线的一个方向向量为,则直线与所成的角为()A30° B.45°C.60° D.90°10.在四面体中,设,若F为BC的中点,P为EF的中点,则=()A. B.C. D.11.下列命题中正确的是()A.抛物线的焦点坐标为B.抛物线的准线方程为x=−1C.抛物线的图象关于x轴对称D.抛物线的图象关于y轴对称12.下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,如果输入a=102,b=238,则输出的a的值为()A.17 B.34C.36 D.68二、填空题:本题共4小题,每小题5分,共20分。13.若抛物线的焦点与椭圆的右焦点重合,则实数m的值为______.14.在正方体中,,,P,F分别是线段,的中点,则点P到直线EF的距离是___________.15.设是定义在上的可导函数,且满足,则不等式解集为_______16.已知椭圆的弦AB的中点为M,O为坐标原点,则直线AB的斜率与直线OM的斜率之积等于_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线l:,圆C:.(1)当时,试判断直线l与圆C的位置关系,并说明理由;(2)若直线l被圆C截得的弦长恰好为,求k的值.18.(12分)设数列满足(1)求的通项公式;(2)记数列的前项和为,是否存在实数,使得对任意恒成立.19.(12分)已知三角形的内角所对的边分别为,且C为钝角.(1)求cosA;(2)若,,求三角形的面积.20.(12分)已知与定点,的距离比为的点P的轨迹为曲线C,过点的直线l与曲线C交于M,N两点.(1)求曲线C的轨迹方程;(2)若,求.21.(12分)已知椭圆与抛物线有一个相同的焦点,且该椭圆的离心率为,(Ⅰ)求该椭圆的标准方程:(Ⅱ)求过点的直线与该椭圆交于A,B两点,O为坐标原点,若,求的面积.22.(10分)如图甲,在直角三角形中,已知,,,D,E分别是的中点.将沿折起,使点A到达点的位置,且,连接,得到如图乙所示的四棱锥,M为线段上一点.(1)证明:平面平面;(2)过B,C,M三点的平面与线段A'E相交于点N,从下列三个条件中选择一个作为已知条件,求直线DN与平面A'BC所成角的正弦值.①;②直线与所成角的大小为;③三棱锥的体积是三棱锥体积的注:如果选择多个条件分别解答,按第一个解答计分.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用数列通项与前n项和的关系和等差数列及等比数列的定义判断.【详解】当时,,当时,,当时,,所以是等差数列;当时,为非等差数列,非等比数列’当时,,所以是等比数列,故选:D2、B【解析】根据图形和中位数、众数的概念依次判断选项即可.【详解】A:由图可知,月收入的最大值为90,最小值为30,故A正确;B:各个月的利润分别为20,30,20,10,30,30,60,40,30,30,50,30,所以总利润为20+30+20+10+30+30+60+40+30+30+50+30=380(万元),故B错误;C:这12个月利润的中位数与众数均为30,故C正确;D:7月份的利润最大,为60万元,故D正确.故选:B3、B【解析】直接利用直线垂直公式计算得到答案.【详解】因为l1⊥l2,所以k1k2=-1,即-=1,解得a=-2.故选:【点睛】本题考查了根据直线垂直计算参数,属于简单题.4、A【解析】根据小矩形的面积之和,算出位于10~30的2组数的频率之和为0.33,从而得到位于30~50的数据的频率之和为1-0.33=0.67,再由频率计算公式即可算出样本容量的值.【详解】位于10~20、20~30的小矩形的面积分别为位于10~20、20~30的据的频率分别为0.1、0.23可得位于10~30的前3组数的频率之和为0.1+0.23=0.33由此可得位于30~50数据的频率之和为1-0.33=0.67∵支出在[30,50)的同学有67人,即位于30~50的频数为67,∴根据频率计算公式,可得解之得.故选:A5、C【解析】利用余弦定理可求得最大角的余弦值小于零,由此可知最大角为钝角.【详解】设三边分别为,,,中的最大角为,,为钝角,为钝角三角形.故选:C.6、A【解析】先作辅助线,设出边长,结合题干条件得到,,利用勾股定理得到关于的等量关系,求出离心率.【详解】连接,设,则根据可知,,因为,由勾股定理得:,由双曲线定义可知:,,解得:,,从而,解得:,所以,,由勾股定理得:,从而,即该双曲线的离心率为.故选:A7、A【解析】设,计算出重心坐标后代入欧拉方程,再求出外心坐标,根据外心的性质列出关于的方程,最后联立解方程即可.【详解】设,由重心坐标公式得,三角形的重心为,,代入欧拉线方程得:,整理得:①的中点为,,的中垂线方程为,即联立,解得的外心为则,整理得:②联立①②得:,或,当,时,重合,舍去顶点的坐标是故选:A【点睛】关键点睛:解决本题的关键一是求出外心,二是根据外心的性质列方程.8、B【解析】设,过点作的平行线,与平行的半径交于点,找出异面直线与所成角,然后通过解三角形可得出所求角的余弦值.【详解】设,过点作的平行线,与平行的半径交于点,则,,所以为异面直线与所成的角,在三角形中,,,所以.故选:B.【点睛】本题考查异面直线所成角余弦值的计算,一般通过平移直线的方法找到异面直线所成的角,考查计算能力,属于中等题.9、C【解析】直接由公式,计算两直线的方向向量的夹角,进而得出直线与所成角的大小【详解】因为,,所以,所以,所以直线与所成角的大小为故选:C10、A【解析】作出图示,根据空间向量的加法运算法则,即可得答案.【详解】如图示:连接OF,因为P为EF中点,,F为BC的中点,则,故选:A11、C【解析】根据抛物线的性质逐项分析可得答案.【详解】抛物线的焦点坐标为,故A错误;抛物线的准线方程为,故B错误;抛物线的图象关于x轴对称,故C正确,D错误;故选:C.12、B【解析】根据程序框图所示代入运行即可.【详解】初始输入:;第一次运算:;第二次运算:;第三次运算:;第四次运算:;结束,输出34.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分别求出椭圆和抛物线的焦点坐标即可出值.【详解】由椭圆方程可知,,,则,即椭圆的右焦点的坐标为,抛物线的焦点坐标为,∵抛物线的焦点与椭圆的右焦点重合,∴,即,故答案为:.14、【解析】以A为坐标原点建立空间直角坐标系,利用向量法即可求解点P到直线EF的距离.【详解】解:如图,以A为坐标原点,,,的方向分别为x,y,z轴的正方向,建立空间直角坐标系,因为,所以,,,所以,,所以点P到直线EF的距离.故答案为:.15、【解析】构造函数,结合题意求得,由此判断出在上递增,由此求解出不等式的解集.【详解】令,,故函数在上单调递增,不等式可化为,则,解得:【点睛】本小题主要考查构造函数法解不等式,考查化归与转化的数学思想方法,属于基础题.16、【解析】根据点是弦的中点,为坐标原点,利用点差法求解.【详解】设,且,则,(1),(2)得:,,.又,,.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)相离,理由见解析;(2)0或【解析】(1)求出圆心到直线的距离和半径比较即可判断;(2)求出圆心到直线的距离,利用弦长计算即可得出.【详解】(1)圆C:的圆心为,半径为2,当时,线l:,则圆心到直线的距离为,直线l与圆C相离;(2)圆心到直线的距离为,弦长为,则,解得或.18、(1)(2)存在【解析】(1)利用“退作差”法求得的通项公式.(2)利用裂项求和法求得,由此求得.【小问1详解】依题意①,当时,.当时,②,①-②得,,时,上式也符合.所以.【小问2详解】.所以.故存在实数,使得对任意恒成立.19、(1)(2)【解析】(1)由正弦定理边化角,可求得角的正弦,由同角关系结合条件可得答案.(2)由(1),由余弦定理,求出边的长,进一步求得面积【小问1详解】因为,由正弦定理得因,所以.因为角为钝角,所以角为锐角,所以【小问2详解】由(1),由余弦定理,得,所以,解得或,不合题意舍去,故的面积为=20、(1)(2)或【解析】(1)设曲线上的任意一点,由题意可得,化简即可得出(2)分直线的斜率不存在与存在两种情况讨论,当斜率不存在时,即可求出、的坐标,从而求出,当直线的斜率存在,设直线方程为,,,联立直线与圆的方程,消元列出韦达定理,则,即可求出,从而求出直线方程,由圆心在直线上,即可求出弦长;【小问1详解】解:(1)设曲线上的任意一点,由题意可得:,即,整理得【小问2详解】解:依题意当直线的斜率不存在时,直线方程为,则,则或,即、,所以、,所以满足条件,此时,当直线的斜率存在,设直线方程为,,,则,消去整理得,由,解得或,所以、,因为,,所以,解得,所以直线方程为,又直线过圆心,所以,综上可得或;21、(Ⅰ);(Ⅱ)【解析】(Ⅰ)根据题意可以求出椭圆的焦点,再根据椭圆的离心率公式,求出的值,然后结合椭圆的关系求出,最后写出椭圆的标准方程;(Ⅱ)根据平面向量共线定理可以得出A,B两点横坐标和纵坐标之间的关系,再设出直线AB方程与椭圆方程联立,利用根与系数关系求出直线AB的斜率,最后根据三角形面积结合根与系数关系求出的面积.【详解】(Ⅰ)由题意,设椭圆的标准方程为,由题意可得,又,,所以椭圆的标准方程为(Ⅱ)设,,由得:,验证易知直线AB的斜率存在,设直线AB的方程为联立椭圆方程,得:,整理得:,得:,将代入得,所以的面积.【点睛】本题考查了求椭圆的标准方程,考查了利用一元二次方程根与系数关系求直线斜率和三角形面积问题,考查了数学运算能力.22、(1)证明见解析(2)【解析】(1)由线面垂直的判定定理及面面垂直的判定定理可得证;(2)分别选①,②,③可求得为的中点,再以为坐标原点,向量的方向分别为轴,轴,轴建立空间直角坐标系.利用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江省安全培训中心课件
- 医疗技术知识产权保护与准入
- 医疗托管中医疗数据跨境传输的法律合规证明
- 医疗托管中医疗合作中的违约责任赔偿时效中断
- 医疗成本管控与绩效改革
- 医疗志愿服务中的医患沟通技巧培训
- 医疗应急预案与风险防控
- 医疗信息化投入产出分析
- 医疗人工智能数据训练与临床信息素养
- 医疗不良事件RCA的根因分析工具对比研究
- 2025年新闻记者资格证及新闻写作相关知识题库附答案
- 长春财经学院《计算机基础》2023-2024学年第一学期期末试卷
- 广东省中山市2024-2025学年八年级上学期期末考试道德与法治试卷(含答案)
- 2025年湖南理工职业技术学院单招(计算机)测试模拟题库必考题
- DB32∕T 5188-2025 经成人中心静脉通路装置采血技术规范
- 华师 八年级 数学 下册《17.2 平行四边形的判定 》课件
- 主板维修课件
- 2025黑龙江大庆市工人文化宫招聘工作人员7人考试历年真题汇编带答案解析
- 2026中央纪委国家监委机关直属单位招聘24人考试笔试模拟试题及答案解析
- 2026年内蒙古化工职业学院单招职业适应性考试必刷测试卷附答案解析
- 财务数字化转型与业财数据深度融合实施路径方案
评论
0/150
提交评论