2023-2024学年湖北省孝感市汉川市汉川二中高二数学第一学期期末学业水平测试试题含解析_第1页
2023-2024学年湖北省孝感市汉川市汉川二中高二数学第一学期期末学业水平测试试题含解析_第2页
2023-2024学年湖北省孝感市汉川市汉川二中高二数学第一学期期末学业水平测试试题含解析_第3页
2023-2024学年湖北省孝感市汉川市汉川二中高二数学第一学期期末学业水平测试试题含解析_第4页
2023-2024学年湖北省孝感市汉川市汉川二中高二数学第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年湖北省孝感市汉川市汉川二中高二数学第一学期期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“”是“方程表示双曲线”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A. B.C. D.3.在数列中,,则()A.2 B.C. D.4.点分别为椭圆左右两个焦点,过的直线交椭圆与两点,则的周长为()A.32 B.16C.8 D.45.已知等比数列中,,,则公比()A. B.C. D.6.设函数,若的整数有且仅有两个,则的取值范围是()A. B.C. D.7.设等比数列,有下列四个命题:①{a②是等比数列;③是等比数列;④lgan其中正确命题的个数是()A.1 B.2C.3 D.48.等差数列中,若,则()A.42 B.45C.48 D.519.若双曲线的一条渐近线方程为.则()A. B.C.2 D.410.下列命题中,结论为真命题的组合是()①“”是“直线与直线相互垂直”的充分而不必要条件②若命题“”为假命题,则命题一定是假命题③是的必要不充分条件④双曲线被点平分的弦所在的直线方程为⑤已知过点的直线与圆的交点个数有2个.A.①③④ B.②③④C.①③⑤ D.①②⑤11.已知直线和直线互相垂直,则等于()A.2 B.C.0 D.12.已知双曲线的离心率为,则该双曲线的渐近线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知圆关于直线对称,则________14.函数单调增区间为______.15.有一道楼梯共10阶,小王同学要登上这道楼梯,登楼梯时每步随机选择一步一阶或一步两阶,小王同学7步登完楼梯的概率为___________.16.数列满足,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆:和圆外一点,过点作圆的切线,切线长为.(1)求圆的标准方程;(2)若圆:,求证:圆和圆相交,并求出两圆的公共弦长.18.(12分)已知函数在处有极值.(1)求的值;(2)求函数在上的最大值与最小值.19.(12分)已知函数(a为常数)(1)讨论函数的单调性;(2)不等式在上恒成立,求实数a的取值范围.20.(12分)已知点,椭圆:的离心率为,是椭圆的右焦点,直线的斜率为,为坐标原点.设过点的动直线与相交于,两点(1)求椭圆的方程(2)是否存在直线,使得的面积为?若存在,求出的方程;若不存在,请说明理由21.(12分)在①,②,③这三个条件中任选一个补充在下面问题中,并解答下列题目设首项为2的数列的前n项和为,前n项积为,且(1)求数列的通项公式;(2)求的值22.(10分)如图,扇形AOB的半径为2,圆心角,点C为弧AB上一点,平面AOB且,点且,面MOC(1)求证:平面平面POB;(2)求平面POA与平面MOC所成二面角的正弦值的大小

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】方程表示双曲线则,解得,是“方程表示双曲线”的充分不必要条件.故选:A2、C【解析】设,利用得到关于的方程,解方程即可得到答案.【详解】如图,设,则,由题意,即,化简得,解得(负值舍去).故选:C【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.3、D【解析】根据递推关系,代入数据,逐步计算,即可得答案.【详解】由题意得,令,可得,令,可得,令,可得,令,可得.故选:D4、B【解析】由题意结合椭圆的定义可得,而的周长等于,从而可得答案【详解】解:由得,由题意得,所以的周长等于,故选:B5、C【解析】利用等比中项的性质可求得的值,再由可求得结果.【详解】由等比中项的性质可得,解得,又,,故选:C.6、D【解析】等价于,令,,利用导数研究函数的单调性,作出的简图,数形结合只需满足即可.【详解】,即,又,则.令,,,当时,,时,,时,,在单调递减,在单调递增,且,且,,作出函数图象如图所示,若的整数有且仅有两个,即只需满足,即,解得:故选:D7、C【解析】根据等比数列的性质对四个命题逐一分析,由此确定正确命题的个数.【详解】是等比数列可得(为定值)①为常数,故①正确②,故②正确③为常数,故③正确④不一定为常数,故④错误故选C.【点睛】本小题主要考查等比数列的性质,属于基础题.8、C【解析】结合等差数列的性质求得正确答案.【详解】依题意是等差数列,,.故选:C9、C【解析】求出渐近线方程为,列出方程求出.【详解】双曲线的渐近线方程为,因为,所以,所以.故选:C10、C【解析】求出两直线垂直时m值判断①;由复合命题真值表可判断②;化简不等式结合充分条件、必要条件定义判断③;联立直线与双曲线的方程组成的方程组验证判断④;判定点与圆的位置关系判断⑤作答.【详解】若直线与直线相互垂直,则,解得或,则“”是“直线与直线相互垂直”的充分而不必要条件,①正确;命题“”为假命题,则与至少一个是假命题,不能推出一定是假命题,②不正确;,,则是的必要不充分条件,③正确;由消去y并整理得:,,即直线与双曲线没有公共点,④不正确;点在圆上,则直线与圆至少有一个公共点,而过点与圆相切的直线为,直线不包含,因此,直线与圆相交,有两个交点,⑤正确,所以所有真命题的序号是①③⑤.故选:C11、D【解析】利用直线垂直系数之间的关系即可得出.【详解】解:直线和直线互相垂直,则,解得:.故选:D.12、C【解析】求得,由此求得双曲线的渐近线方程.【详解】离心率,则,所以渐近线方程.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】根据题意,圆心在直线上,进而求得答案.【详解】由题意,圆心在直线上,则.故答案为:1.14、【解析】利用导数法求解.【详解】因为函数,所以,当时,,所以的单调增区间是,故答案为:15、【解析】由题意可分为步、步、步、步、步、步共6种情况,分别求出每种的基本事件数,再利用古典概型的概率公式计算可得;【详解】解:由题意可分为步、步、步、步、步、步共6种情况,①步:即步两阶,有种;②步:即步两阶与步一阶,有种;③步:即步两阶与步一阶,有种;④步:即步两阶与步一阶,有种;⑤步:即步两阶与步一阶,有种;⑥步:即步一阶,有种;综上可得一共有种情况,满足7步登完楼梯的有种;故7步登完楼梯的概率为故答案为:16、【解析】对递推关系多递推一次,再相减,可得,再验证是否满足;【详解】∵①时,②①-②得,时,满足上式,.故答案为:.【点睛】数列中碰到递推关系问题,经常利用多递推一次再相减的思想方法求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析,公共弦长为【解析】(1)根据切线长公式计算即可得到,然后代入可得圆的方程.(2)联立两圆的方程作差可得直线的方程为,然后利用圆的弦长公式计算即可.【小问1详解】圆的标准方程为,所以圆心为,半径.由勾股定理可得,解得.所以圆的标准方程为.【小问2详解】由题意得圆的圆心,半径,圆的圆心,半径,因为,,所以圆和圆相交.设两圆相交于,两点,则两圆的方程相减得直线的方程为,圆心到直线的距离.所以,所以两圆的公共弦长为.18、(1),;(2)最大值为,最小值为【解析】(1)对函数求导,根据函数在处取极值得出,再由极值为,得出,构造一个关于的二元一次方程组,便可解出的值;(2)由(1)可知,求出,利用导数研究函数在上的单调性,比较极值和端点值的大小,即可得出在上的最大值与最小值.【详解】解:(1)由题可知,,的定义域为,,由于在处有极值,则,即,解得:,,(2)由(1)可知,其定义域是,,令,而,解得,由,得;由,得,则在区间上,,,的变化情况表如下:120单调递减单调递增可得,,,由于,则,所以,函数在区间上的最大值为,最小值为.【点睛】本题考查已知极值求参数值和函数在闭区间内的最值问题,考查利用导函数研究函数在给定闭区间内的单调性,以及通过比较极值和端点值确定函数在闭区间内的最值,考查运算能力.19、(1)当时,在定义域上单调递增;当时,在上单调递增,在上单调递减;(2).【解析】(1)求出的导数,通过讨论的范围,求出函数的单调区间即得解;(2)问题转化为,,,令,求出的最大值,从而求出的范围即得解【详解】解:(1)函数的定义域为,,①当时,,,,在定义域上单调递增②当时,若,则,在上单调递增;若,则,在上单调递减综上所述,当时,在定义域上单调递增;当时,在上单调递增,在上单调递减(2)当时,,不等式在,上恒成立,,,,令,,,,在,上单调递增,(1),,的范围为,20、(1);(2)存在;或.【解析】(1)设,由,,,求得的值即可得椭圆的方程;(2)设,,直线的方程为与椭圆方程联立可得,,进而可得弦长,求出点到直线的距离,解方程,求得的值即可求解.【小问1详解】设,因为直线的斜率为,,所以,可得,又因为,所以,所以,所以椭圆的方程为【小问2详解】假设存在直线,使得的面积为,当轴时,不合题意,设,,直线的方程为,联立消去得:,由可得或,,,所以,点到直线的距离,所以,整理可得:即,所以或,所以或,所以存在直线:或使得的面积为.21、(1)(2)【解析】(1)若选①可得,从而得到,即可得到是常数列,即可求出数列的通项公式;若选②,根据,作差即可得到,再利用累乘法计算可得;若选③:可得,即可得到数列是等差数列,首项为2,公差为1,从而求出数列的通项公式;(2)由(1)可得,利用裂项相消法计算可得;【小问1详解】解:选①:∵即∴即∴数列是常数列∴∴选②:∵∴时,则即∴∴当时,也满足,∴选③:因为,所以,所以数列是等差数列,首项为2,公差为1则∴【小问2详解】解:由(1)可得,∴22、(1)证明见解析(2)【解析】(1)连接,设与相交于点,连接MN,利用余弦定理可求得,,的长度,进而得到,又,由此可得平面,最后利用面面垂直的判定定理即可得证;(2)建立恰当空间直角坐标系,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论