版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年内蒙古赤峰市重点高中高二数学第一学期期末质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,,,,则此三角形()A.无解 B.一解C.两解 D.解的个数不确定2.已知椭圆方程为:,则其离心率为()A. B.C. D.3.若方程表示焦点在y轴上的双曲线,则实数m的取值范围为()A. B.C. D.且4.年月日我国公布了第七次全国人口普查结果.自新中国成立以来,我国共进行了七次全国人口普查,如图为我国历次全国人口普查人口性别构成及总人口性别比(以女性为,男性对女性的比例)统计图,则下列说法错误的是()A.第五次全国人口普查时,我国总人口数已经突破亿B.第一次全国人口普查时,我国总人口性别比最高C.我国历次全国人口普查总人口数呈递增趋势D.我国历次全国人口普查总人口性别比呈递减趋势5.古希腊数学家阿基米德利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积,已知椭圆的面积为,、分别是的两个焦点,过的直线交于、两点,若的周长为,则的离心率为()A. B.C. D.6.已知椭圆的左右焦点分别为、,点在椭圆上,若、、是一个直角三角形的三个顶点,则点到轴的距离为A B.4C. D.7.设函数在定义域内可导,的图象如图所示,则导函数的图象可能为()A. B.C. D.8.若双曲线的焦距为,则双曲线的渐近线方程为()A. B.C. D.9.已知点是椭圆上的任意一点,过点作圆:的切线,设其中一个切点为,则的取值范围为()A. B.C. D.10.已知集合,从集合A中任取一点P,则点P满足约束条件的概率为()A. B.C. D.11.已知是等差数列,,,则公差为()A.6 B.C. D.212.过点的直线与圆相切,则直线的方程为()A.或 B.或C.或 D.或二、填空题:本题共4小题,每小题5分,共20分。13.设实数、满足约束条件,则的最小值为___________.14.已知,,,若,则______.15.函数在处的切线方程为_________16.直线过点,且原点到直线l的距离为,则直线方程是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,其中,.(1)当时,求曲线在点处切线方程;(2)求函数的单调区间.18.(12分)森林资源是全人类共有的宝贵财富,其在改善环境,保护生态可持续发展方面发挥着重要的作用.2020年12月12日,主席在全球气候峰会上通过视频发表题为《继往开来,开启全球应对气候变化的新征程》的重要讲话,宣布“到2030年,我国森林蓄积量将比2005年增加60亿立方米”.为了实现这一目标,某地林业管理部门着手制定本地的森林蓄积量规划.经统计,本地2020年底的森林蓄积量为120万立方米,森林每年以25%的增长率自然生长,而为了保证森林通风和发展经济的需要,每年冬天都要砍伐掉万立方米的森林.设为自2021年开始,第年末的森林蓄积量.(1)请写出一个递推公式,表示二间的关系;(2)将(1)中的递推公式表示成的形式,其中,为常数;(3)为了实现本地森林蓄积量到2030年底翻两番的目标,每年的砍伐量最大为多少万立方米?(精确到1万立方米)(可能用到的数据:,,)19.(12分)年世界人工智能大会已于年月在上海徐汇西岸举行,某高校的志愿者服务小组受大会展示项目的启发,会后决定开发一款“猫捉老鼠”的游戏.如图所示,、两个信号源相距米,是的中点,过点的直线与直线的夹角为,机器猫在直线上运动,机器鼠的运动轨迹始终满足:接收到点的信号比接收到点的信号晚秒(注:信号每秒传播米).在时刻时,测得机器鼠距离点为米.(1)以为原点,直线为轴建立平面直角坐标系(如图),求时刻时机器鼠所在位置的坐标;(2)游戏设定:机器鼠在距离直线不超过米的区域运动时,有“被抓”的风险.如果机器鼠保持目前的运动轨迹不变,是否有“被抓”风险?20.(12分)已知两条直线,.设为实数,分别根据下列条件求的值.(1);(2)直线在轴、轴上截距之和等于.21.(12分)已知等差数列满足,前7项和为(Ⅰ)求的通项公式(Ⅱ)设数列满足,求的前项和.22.(10分)如图,已知平面,底面为正方形,,分别为的中点(1)求证:平面;(2)求与平面所成角的正弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用正弦定理求出的值,再根据所求值及a与b的大小关系即可判断作答.【详解】在中,,,,由正弦定理得,而为锐角,且,则或,所以有两解故选:C2、B【解析】根据椭圆的标准方程,确定,计算离心率即可.【详解】由知,,,,即,故选:B3、A【解析】根据双曲线定义,且焦点在y轴上,则可直接列出相关不等式.【详解】若方程表示焦点在y轴上的双曲线,则必有:,且解得:故选:4、D【解析】根据统计图判断各选项的对错.【详解】由统计图第五次全国人口普查时,男性和女性人口数都超过6亿,故总人口数超过12亿,A对,由统计图,第一次全国人口普查时,我国总人口性别比为107.56,超过余下几次普查的人口的性别比,B对,由统计图可知,我国历次全国人口普查总人口数呈递增趋势,C对,由统计图可知,第二次,第三次,第四次,第五次时总人口性别比呈递增趋势,D错,D错,故选:D.5、A【解析】本题首先可根据题意得出,然后根据的周长为得出,最后根据求出的值,即可求出的离心率.【详解】因为椭圆的面积为,所以长半轴长与短半轴长的乘积,因为的周长为,所以根据椭圆的定义易知,,,,则的离心率,故选:A.6、D【解析】设椭圆短轴的一个端点为根据椭圆方程求得c,进而判断出,即得或令,进而可得点P到x轴的距离【详解】解:设椭圆短轴的一个端点为M由于,,;,只能或令,得,故选D【点睛】本题主要考查了椭圆的基本应用考查了学生推理和实际运算能力是基础题7、D【解析】根据的图象可得的单调性,从而得到在相应范围上的符号和极值点,据此可判断的图象.【详解】由的图象可知,在上为增函数,且在上存在正数,使得在上为增函数,在为减函数,故在有两个不同的零点,且在这两个零点的附近,有变化,故排除A,B.由在上为增函数可得在上恒成立,故排除C.故选:D.【点睛】本题考查导函数图象的识别,此类问题应根据原函数的单调性来考虑导函数的符号与零点情况,本题属于基础题.8、A【解析】由焦距为可得,又,进而可得,最后根据焦点在轴上的双曲线的渐近线方程为即可求解.【详解】解:因为双曲线的焦距为,所以,所以,解得,所以,所以双曲线的渐近线方程为,即,故选:A.9、B【解析】设,得到,利用椭圆的范围求解.【详解】解:设,则,,,因为,所以,即,故选:B10、C【解析】根据圆的性质,结合两条直线的位置关系、几何概型计算公式进行求解即可.【详解】,圆心坐标为,半径为,直线互相垂直,且交点为,由圆的性质可知:点P满足约束条件的概率为,故选:C11、C【解析】设的首项为,把已知的两式相减即得解.【详解】解:设的首项为,根据题意得,两式相减得.故选:C12、D【解析】根据斜率存在和不存在分类讨论,斜率存在时设直线方程,由圆心到直线距离等于半径求解【详解】圆心为,半径为2,斜率不存在时,直线满足题意,斜率存在时,设直线方程为,即,由,得,直线方程为,即故选:D二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】画出不等式组对应的可行域,平移动直线后可得目标函数的最小值.【详解】不等式组对应的可行域如图所示:将初始直线平移至点时,可取最小值,由可得,故,故答案为:2.14、【解析】根据题意,由向量坐标表示,列出方程,求出,,即可得出结果.【详解】因为,,,若,则,解得,所以.故答案为:.【点睛】本题主要考查由向量坐标表示求参数,属于基础题型.15、【解析】求得函数的导数,得到且,结合直线的点斜式方程,即可求解.【详解】由题意,函数,可得,则且,所以函数在处的切线方程为,即,即切线方程为.故答案为:.16、【解析】直线斜率不存在不满足题意,即设直线的点斜式方程,再利用点到直线的距离公式,求出的值,即可求出直线方程.【详解】①当直线斜率不存在时,显然不满足题意.②当直线斜率存在时,设直线为.原点到直线l的距离为,即直线方程为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)答案见解析.【解析】(1)当时,,求出函数的导函数,再求出,,再利用点斜式求出切线方程;(2)首先求出函数的导函数,再对参数分类讨论,求出函数的单调区间;【详解】解:(1)当时,,所以,所以,,所以切线方程为:,即:(2)函数定义域为,,因为,①当时,在上恒成立,所以函数的单调递增区间为,无单调递减区间;②当时,由得,由得,所以函数的单调递增区间为,单调递减区间为【点睛】本题考查导数的几何意义,利用导数研究含参函数的单调区间,属于基础题.18、(1);(2).;(3)19万立方米.【解析】(1)由题意得到;(2)若递推公式写成,则,再与递推公式比较系数;(3)若实现翻两番的目标,则,根据递推公式,计算的最大值.【详解】解:(1)由题意,得,并且.①(2)将化成,②比较①②的系数,得解得所以(1)中的递推公式可以化为.(3)因为,且,所以,由(2)可知,所以,即数列是以为首项,为公比的等比数列,其通项公式:,所以.到2030年底的森林蓄积量为该数列的第10项,即.由题意,森林蓄积量到2030年底要达到翻两番的目标,所以,即.即.解得.所以每年的砍伐量最大为19万立方米.【点睛】方法点睛:递推公式求通项公式,有以下几种方法:
型如:的数列的递推公式,采用累加法求通项;
形如:的数列的递推公式,采用累乘法求通项;
形如:的递推公式,通过构造转化为,构造数列是以为首项,为公比的等比数列,
形如:的递推公式,两边同时除以,转化为的形式求通项公式;
形如:,可通过取倒数转化为等差数列求通项公式.19、(1);(2)没有.【解析】(1)设机器鼠位置为点,由题意可得,即,可得的轨迹为以、为焦点的双曲线的右支,分析取值,即得解双曲线的方程,由可得P点坐标.(2)转化机器鼠与直线最近的距离为与直线平行的直线与双曲线相切时,平行线间的距离,设的方程为,与双曲线联立,求出的值,再利用平行线间的距离公式,即得解【详解】(1)设机器鼠位置为点,、,由题意可得,即,可得的轨迹为以、为焦点的双曲线的右支,设其方程为:(,),则、、,则的轨迹方程为:(),时刻时,,即,可得机器鼠所在位置的坐标为;(2)由题意,直线,设直线的平行线的方程为,联立,可得:,,解得,又,∴,∴,即:与双曲线的右支相切,切点即为双曲线右支上距离最近的点,此时与的距离为,即机器鼠距离最小的距离为,则机器鼠保持目前运动轨迹不变,没有“被抓”的风险.20、(1);(2).【解析】(1)由两直线平行可得出关于的等式,求出的值,再代入两直线方程,验证两直线是否平行,由此可得出结果;(2)分析可知,求出直线在轴、轴上的截距,结合已知条件可得出关于的等式,即可解得的值.【小问1详解】解:由,则,即,解得或.当时,,,此时;当时,,,此时重合,不合乎题意.综上所述,;【小问2详解】解:对于直线,由已知可得,则,令,得;令,得.因为直线在轴、轴上截
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026北京银行招聘面试题及答案
- 2026年扬州市公安局邗江分局公开招聘35名警务辅助人员备考题库及1套参考答案详解
- 2025年茂名市电白区事业单位面向驻茂部队未就业随军家属公开招聘工作人员备考题库完整参考答案详解
- 上海民航职业技术学院《中国近代史纲要》2023-2024学年第一学期期末试卷
- 中国科学院半导体研究所2026年度招聘备考题库及答案详解参考
- 2026年冬季如皋市卫健系统部分单位公开招聘合同制工作人员备考题库完整答案详解
- 2026年北京市体育局所属事业单位公开招聘工作人员备考题库及参考答案详解
- 中山市人民政府东区街道办事处2026年公开招聘事业单位人员备考题库及答案详解参考
- 2026年杭州师范大学招聘65人备考题库(冬季)(含答案详解)
- 2026年建昌县第二小学公开招聘临时代课教师备考题库及答案详解(考点梳理)
- 2026秋招:贵州盐业集团笔试题及答案
- 留学合同补充协议
- 大学计算机教程-计算与人工智能导论(第4版)课件 第10章 云计算与大数据
- 全球创新药临床试验十年趋势洞察
- 2025年超声科工作总结和2026年工作计划
- 2025河南郑州公用事业投资发展集团有限公司招聘10人笔试参考题库附带答案详解(3卷)
- 北师大版初中九年级上册数学期末试卷后附答案
- 枪支管理法考试题及答案
- 张家口市氢能产业安全监督和管理办法
- 2025年自然资源部所属单位工作人员招聘考试试题(含答案)
- DB34∕T 4958-2024 地市级卫生应急指挥处置中心建设指南
评论
0/150
提交评论