版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年四川省广元市苍溪中学高二上数学期末检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆与圆没有公共点,则实数a的取值范围为()A. B.C. D.2.年月日我国公布了第七次全国人口普查结果.自新中国成立以来,我国共进行了七次全国人口普查,如图为我国历次全国人口普查人口性别构成及总人口性别比(以女性为,男性对女性的比例)统计图,则下列说法错误的是()A.第五次全国人口普查时,我国总人口数已经突破亿B.第一次全国人口普查时,我国总人口性别比最高C.我国历次全国人口普查总人口数呈递增趋势D.我国历次全国人口普查总人口性别比呈递减趋势3.已知椭圆C:的左、右焦点分别为F1,F2,过点F1作直线l交椭圆C于M,N两点,则的周长为()A.3 B.4C.6 D.84.如图,M为OA的中点,以为基底,,则实数组等于()A. B.C. D.5.某公司有320名员工,将这些员工编号为1,2,3,…,320,从这些员工中使用系统抽样的方法抽取20人进行“学习强国”的问卷调查,若54号被抽到,则下面被抽到的是()A.72号 B.150号C.256号 D.300号6.已知抛物线的焦点是双曲线的一个焦点,则双曲线的渐近线方程为()A. B.C. D.7.已知函数,则的值为()A. B.C. D.8.在平行六面体ABCD﹣A1B1C1D1中,AC与BD的交点为M,设=,=,=,则=()A.++ B.+C.++ D.+9.如图1所示,抛物面天线是指由抛物面(抛物线绕其对称轴旋转形成的曲面)反射器和位于其焦点上的照射器(馈源,通常采用喇叭天线)组成的单反射面型天线,广泛应用于微波和卫星通讯等,具有结构简单、方向性强、工作频带宽等特点.图2是图1的轴截面,,两点关于抛物线的对称轴对称,是抛物线的焦点,是馈源的方向角,记为.焦点到顶点的距离与口径的比为抛物面天线的焦径比,它直接影响天线的效率与信噪比等.若馈源方向角满足,则该抛物面天线的焦径比为()A. B.C. D.210.在数列中,若,,则()A.16 B.32C.64 D.12811.设等差数列前n项和是,若,则的通项公式可以是()A. B.C. D.12.在等差数列中,已知,则()A.4 B.8C.3 D.6二、填空题:本题共4小题,每小题5分,共20分。13.总体由编号为01,02,…,30的30个个体组成.选取方法是从下面随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为____________.66065747173407275017362523611665118918331119921970058102057864532345647614.设空间向量,且,则___________.15.在平面直角坐标系中,直线与的交点为,以为圆心作圆,圆上的点到轴的最小距离为(Ⅰ)求圆的标准方程;(Ⅱ)过点作圆的切线,求切线的方程16.若,则数列的前21项和___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆,圆心在直线上(1)求圆的标准方程;(2)求直线被圆截得的弦的长18.(12分)如图所示,、分别为椭圆的左、右焦点,A,B为两个顶点,已知椭圆C上的点到、两点的距离之和为4.(1)求a的值和椭圆C的方程;(2)过椭圆C的焦点作AB的平行线交椭圆于P,Q,求的面积19.(12分)“既要金山银山,又要绿水青山”.滨江风景区在一个直径为100米的半圆形花园中设计一条观光线路(如图所示).在点与圆弧上的一点(不同于A,B两点)之间设计为直线段小路,在直线段小路的两侧(注意是两侧)种植绿化带;再从点到点设计为沿弧的弧形小路,在弧形小路的内侧(注意是一侧)种植绿化带(注:小路及绿化带的宽度忽略不计).(1)设(弧度),将绿化带总长度表示为的函数;(2)试确定的值,使得绿化带总长度最大.(弧度公式:,其中为弧所对的圆心角)20.(12分)设p:关于x的不等式有解,q:.(1)若p为真命题,求实数m的取值范围;(2)若为假命题,为真命题,求实数m的取值范围.21.(12分)如图,在直三棱柱中,平面侧面,且.(1)求证:;(2)若直线与平面所成的角为,请问在线段上是否存在点,使得二面角的大小为,若存在请求出的位置,不存在请说明理由.22.(10分)等差数列的前项和记为,已知.(1)求的通项公式:(2)求,并求为何值时的值最大.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】求出圆、的圆心和半径,再由两圆没有公共点列不等式求解作答.【详解】圆的圆心,半径,圆的圆心,半径,,因圆、没有公共点,则有或,即或,又,解得或,所以实数a的取值范围为.故选:B2、D【解析】根据统计图判断各选项的对错.【详解】由统计图第五次全国人口普查时,男性和女性人口数都超过6亿,故总人口数超过12亿,A对,由统计图,第一次全国人口普查时,我国总人口性别比为107.56,超过余下几次普查的人口的性别比,B对,由统计图可知,我国历次全国人口普查总人口数呈递增趋势,C对,由统计图可知,第二次,第三次,第四次,第五次时总人口性别比呈递增趋势,D错,D错,故选:D.3、D【解析】由的周长为,结合椭圆的定义,即可求解.【详解】由题意,椭圆,可得,即,如图所示,根据椭圆的定义,可得的周长为故选:D.4、B【解析】根据空间向量减法的几何意义进行求解即可.【详解】,所以实数组故选:B5、B【解析】根据系统抽样分成20个小组,每组16人中抽一人,故抽到的序号相差16的整数倍,即可求解.【详解】∵用系统抽样的方法从320名员工中抽取一个容量为20的样本∴,即每隔16人抽取一人∵54号被抽到∴下面被抽到的是54+16×6=150号,而其他选项中的数字不满足与54相差16的整数倍,故答案为:B故选:B6、B【解析】根据抛物线和写出焦点坐标,利用题干中的坐标相等,解出,结合从而求出答案.【详解】抛物线的焦点为,双曲线的,,所以,所以双曲线的右焦点为:,由题意,,两边平方解得,,则双曲线的渐近线方程为:.故选:B.7、C【解析】利用导数公式及运算法则求得,再求解【详解】因为,所以,所以故选:C8、B【解析】利用向量三角形法则、平行四边形法则、向量共线定理即可得出【详解】如图所示,∵=+,又=,=-,=,∴=+,故选:B9、B【解析】建立平面直角坐标系,利用题设条件得到得点坐标,代入抛物线方程化简即可求解【详解】建立如图所示的平面直角坐标系,设抛物线的方程为()在中,则所以则所以,所以将代入抛物线方程中得所以或即或(舍)当时,故选:B10、C【解析】根据题意,为等比数列,用基本量求解即可.【详解】因为,故是首项为2,公比为2的等比数列,故.故选:C11、D【解析】根据题意可得公差的范围,再逐一分析各个选项即可得出答案.【详解】解:设等差数列的公差为,由,得,所以,故AB错误;若,则,与题意矛盾,故C错误;若,则,符合题意.故选:D.12、B【解析】根据等差数列的性质计算出正确答案.【详解】由等差数列的性质可知,得.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、23【解析】根据随机表,由编号规则及读表位置列举出前5个符合要求的编号,即可得答案.【详解】由题设,依次得到的数字为57,47,17,34,07,27,50,17,36,25,23,……根据编号规则符合要求的依次为17,07,27,25,23,……所以第5个个体编号为23.故答案为:23.14、1【解析】根据,由求解.【详解】因为向量,且,所以,即,解得.故答案为:115、(Ⅰ);(Ⅱ)或【解析】(Ⅰ)求出点的坐标,设圆的半径为,圆上的点到轴的最小距离为1求得的值,由此可得出圆的标准方程;(Ⅱ)对切线的斜率是否存在进行分类讨论,当切线的斜率不存在时,可得切线方程为,验证即可;当切线的斜率存在时,可设所求切线的方程为,利用圆心到切线的距离等于圆的半径可求得的值,综合可得出所求切线的方程.【详解】(Ⅰ)联立方程组,解得,即点设圆的半径为,由于圆上的点到轴的最小距离为,则,所以,故圆的标准方程为;(Ⅱ)若切线的斜率不存在,则所求切线的方程为,圆心到直线的距离为,不合乎题意;若切线的斜率存在,可设切线的方程为,即,圆的圆心坐标为,半径为,由题意可得,整理得,解得或故所求切线方程为或【点睛】本题考查圆的标准方程的求解,同时也考查了过圆外一点的圆的切线方程的求解,考查计算能力,属于中等题.16、【解析】利用分组求和法求出答案即可.【详解】故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)由圆的一般式方程求出圆心代入直线即可求出得值,即可求解;(2)先计算圆心到直线的距离,利用即可求弦长.【详解】(1)由圆,可得所以圆心为,半径又圆心在直线上,即,解得所以圆的一般方程为,故圆的标准方程为(2)由(1)知,圆心,半径圆心到直线的距离则直线被圆截得的弦的长为所以,直线被圆截得弦的长为【点睛】方法点睛:圆的弦长的求法(1)几何法,设圆的半径为,弦心距为,弦长为,则;(2)代数法,设直线与圆相交于,,联立直线与圆的方程,消去得到一个关于的一元二次方程,从而可求出,,根据弦长公式,即可得出结果.18、(1)a=2,(2)【解析】(1)由题意可得a=2,,求出,从而可求得椭圆方程,(2)由题意可求出的坐标,则可求出直线PQ的方程,然后将直线方程与椭圆方程联立,消去,利用根与系数的关系,求出的值,从而可求出的值【小问1详解】由椭圆定义可得2a=4,所以a=2,又因点在椭圆C上,所以,解得:,所以a的值为2,椭圆C的方程为【小问2详解】由椭圆的方程可得,,,所以,所以直线PQ的方程为,设,,由可得,所以,,所以,所以19、(1);(2).【解析】(1)在直角三角形中,求出,在扇形中利用弧长公式求出弧的长度,则可得函数;(2)利用导数可求得结果.【详解】(1)如图,连接在直角三角形中,所以由于则弧的长为(2)由(1)可知,令得,因为所以,当单调递增,当单调递减,所以当时,使得绿化带总长度最大.【点睛】关键点点睛:仔细审题,注意题目中的关键词“两侧”和“一侧”是解题关键.20、(1)(2)【解析】根据题意,解出p和q里面m的范围即可求解﹒其中有解,则≥0﹒【小问1详解】p为真命题时,,解得,所以m的取值范围是;【小问2详解】q为真命题时,即,解得,所以q为假命题时,或,由(1)知,p为假时,因为为假命题,为真命题,所以p,q为一真一假,当p真q假时,且“或”,解得;当p假q真时,,解得;综上:m的取值范围是21、(1)证明见解析(2)存在,点E为线段中点【解析】(1)通过作辅助线结合面面垂直的性质证明侧面,从而证明结论;(2)建立空间直角坐标系,求出相关点的坐标,再求相关的向量坐标,求平面的法向量,利用向量的夹角公式求得答案.【小问1详解】证明:连接交于点,因,则由平面侧面,且平面侧面,得平面,又平面,所以三棱柱是直三棱柱,则底面ABC,所以.又,从而侧面,又侧面,故.【小问2详解】由(1).平面,则直线与平面所成的角,所以,又,所以假设在线段上是否存在一点E,使得二面角的大小为,由是直三棱柱,所以以点A为原点,以AC、所在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生产员工质量意识强化培训
- 第六单元课外古诗词诵读《浣溪沙》课件统编版八年级语文上册
- 平台维护制式合同范本
- 实习期的第三方协议书
- 工程运输劳务合同范本
- 店铺转让合同终止协议
- 开学典礼广告合同范本
- 家政管家采购合同范本
- 店铺平台合作合同范本
- 学员住宿免责协议合同
- 昆山钞票纸业有限公司2026年度招聘备考题库附答案详解
- 2025年巴楚县辅警招聘考试备考题库附答案
- GB/T 46793.1-2025突发事件应急预案编制导则第1部分:通则
- 老人再婚协议书
- 2025年九江理工职业学院单招职业适应性测试模拟测试卷附答案解析
- 广东省深圳市盐田高级中学2025-2026学年高三上学期12月末测试数学试题(含答案)
- 2025辽宁沈阳盛京资产管理集团有限公司所属子公司沈阳华海锟泰投资有限公司所属子公司招聘5人考试参考题库附答案
- 项目划分表(土建)
- 静配中心细胞毒性药物的配置方法
- 肿瘤学课件:女性生殖系统肿瘤(中文版)
- 化工厂新员工安全培训教材DOC
评论
0/150
提交评论