版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年新乡市重点中学高二上数学期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点F为抛物线C:的焦点,点,若点Р为抛物线C上的动点,当取得最大值时,点P恰好在以F,为焦点的椭圆上,则该椭圆的离心率为()A. B.C. D.2.已知数列通项公式,则()A.6 B.13C.21 D.313.斗笠,用竹篾夹油纸或竹叶粽丝等编织,是人们遮阳光和雨的工具.某斗笠的三视图如图所示(单位:),若该斗笠水平放置,雨水垂直下落,则该斗笠被雨水打湿的面积为()A. B.C. D.4.已知P是直线上的动点,PA,PB是圆的切线,A,B为切点,C为圆心,那么四边形PACB的面积的最小值是()A2 B.C.3 D.5.在中,角A,B,C的对边分别为a,b,c.若,,则的形状为()A.直角三角形 B.等边三角形C.等腰直角三角形 D.等腰或直角三角形6.已知双曲线,点F为其左焦点,点B,若BF所在直线与双曲线的其中一条渐近线垂直,则该双曲线的离心率为()A. B.C. D.7.如图,在棱长为1的正方体中,M是的中点,则点到平面MBD的距离是()A. B.C. D.8.已知等差数列的公差,若,,则该数列的前项和的最大值为()A.30 B.35C.40 D.459.命题:“,”的否定是()A., B.,C., D.,10.已知方程表示的曲线是焦点在轴上的椭圆,则的取值范围A. B.C. D.11.已知点为双曲线的左顶点,点和点在双曲线的右分支上,是等边三角形,则的面积是A. B.C. D.12.已知平面内有一点,平面的一个法向量为,则下列四个点中在平面内的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知F1,F2是双曲线C:﹣y2=1(a>0)的左、右焦点,点P是双曲线C上的任意一点(不是顶点),过F1作∠F1PF2的角平分线的垂线,垂足为H,O是坐标原点.若|F1F2|=6|OH|,则双曲线C的方程为____14.已知是双曲线的左、右焦点,若为双曲线上一点,且,则__________.15.不透明袋中装有完全相同,标号分别为1,2,3,…,8的八张卡片.从中随机取出3张.设X为这3张卡片的标号相邻的组数(例如:若取出卡片的标号为3,4,5,则有两组相邻的标号3、4和4、5,此时X的值是2).则随机变量X的数学期望______16.用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是奇数的四位数,这样的四位数一共有___________个.(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中中,平面ABCD,底面ABCD是边长为2的正方形,.(1)求证:平面;(2)求二面角的平面角的余弦值.18.(12分)如图所示,在四棱锥中,底面是正方形,侧棱底面,,是的中点,过点作交于点.求证:(1)平面;(2)平面.19.(12分)人类社会正进入数字时代,网络成为了必不可少的工具,智能手机也给我们的生活带来了许多方便.但是这些方便、时尚的手机,却也让你的眼睛离健康越来越远.为了了解手机对视力的影响程度,某研究小组在经常使用手机的中学生中进行了随机调查,并对结果进行了换算,统计了中学生一个月中平均每天使用手机的时间x(小时)和视力损伤指数的数据如下表:平均每天使用手机的时间x(小时)1234567视力损伤指数y25812151923(1)根据表中数据,求y关于x的线性回归方程.(2)该小组研究得知:视力的下降值t与视力损伤指数y满足函数关系式,如果小明在一个月中平均每天使用9个小时手机,根据(1)中所建立的回归方程估计小明视力的下降值(结果保留一位小数).参考公式及数据:,..20.(12分)如图,在四棱锥中,四边形为正方形,已知平面,且,E为中点(1)证明:平面;(2)证明:平面平面21.(12分)已知椭圆:的左、右焦点分别为,,离心率等于,点,且的面积等于(1)求椭圆的标准方程;(2)已知斜率存在且不为0的直线与椭圆交于A,B两点,当点A关于y轴的对称点在直线PB上时,直线是否过定点?若过定点,求出此定点;若不过,请说明理由22.(10分)某校从高一年级学生中随机抽取40名中学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:,,…,所得到如图所示的频率分布直图(1)求图中实数的值;(2)若该校高一年级共有640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】过点P引抛物线准线的垂线,交准线于D,根据抛物线的定义可知,记,根据题意,当最小,即直线与抛物线相切时满足题意,进而解出此时P的坐标,解得答案即可.【详解】如图,易知点在抛物线C的准线上,作PD垂直于准线,且与准线交于点D,记,则.由抛物线定义可知,.由图可知,当取得最大值时,最小,此时直线与抛物线相切,设切线方程为,代入抛物线方程并化简得:,,方程化为:,代入抛物线方程解得:,即,则,.于是,椭圆的长轴长,半焦距,所以椭圆的离心率.故选:D.2、C【解析】令即得解.【详解】解:令得.故选:C3、A【解析】根据三视图可知,该几何体是由一个底面半径为10,高为20的圆锥和宽度为20的圆环组成的几何体,则所求面积积为圆锥的侧面积与圆环的面积之和【详解】根据三视图可知,该几何体是由一个底面半径为10,高为20的圆锥和宽度为20的圆环组成的几何体,所以该斗笠被雨水打湿的面积为,故选:A4、D【解析】由圆C的标准方程可得圆心为(1,1),半径为1,根据切线的性质可得四边形PACB面积等于,,故求解最小时即可确定四边形PACB面积的最小值.【详解】圆C:x2+y2-2x-2y+1=0即,表示以C(1,1)为圆心,以1为半径的圆,由于四边形PACB面积等于2×××=,而,故当最小时,四边形PACB面积最小,又的最小值等于圆心C到直线l:的距离d,而,故四边形PACB面积的最小值为,故选:D5、B【解析】直接利用正弦定理以及已知条件,求出、、的关系,即可判断三角形的形状【详解】解:在中,已知,,,分别为角,,的对边),由正弦定理可知:,所以,解得,所以为等边三角形故选:【点睛】本题考查三角形的形状的判断,正弦定理的应用,考查计算能力,属于基础题6、C【解析】设出双曲线半焦距c,利用斜率坐标公式结合垂直关系列式计算作答.【详解】设双曲线半焦距为c,则,直线BF的斜率为,双曲线的渐近线为:,因直线BF与双曲线的一条渐近线垂直,则有,即,于是得,而,解得,所以双曲线的离心率为.故选:C7、A【解析】等体积法求解点到平面的距离.【详解】连接,,则,,由勾股定理得:,,取BD中点E,连接ME,由三线合一得:ME⊥BD,则,故,设到平面MBD的距离是,则,解得:,故点到平面MBD的距离是.故选:A8、D【解析】利用等差数列的性质求出公差以及首项,再由等差数列的前项和公式即可求解.【详解】等差数列,由,有,又,公差,所以,,得,,,∴当或10时,最大,,故选:D9、D【解析】利用全称量词命题的否定可得出结论.【详解】由全称量词命题的否定可知,命题“,”的否定是“,”.故选:D.10、A【解析】根据条件,列出满足条件的不等式,求的取值范围.【详解】曲线表示交点在轴的椭圆,,解得:.故选A【点睛】本题考查根据椭圆的焦点位置求参数的取值范围,意在考查基本概念,属于基础题型.11、C【解析】设点在轴上方,由是等边三角形得直线斜率.又直线过点,故方程为.代入双曲线方程,得点的坐标为.同理可得,点的坐标为.故的面积为,选C.12、A【解析】设所求点的坐标为,由,逐一验证选项即可【详解】设所求点的坐标为,则,因为平面的一个法向量为,所以,,对于选项A,,对于选项B,,对于选项C,,对于选项D,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、8x2﹣y2=1【解析】延长F1H与PF2,交于K,连接OH,由三角形的中位线定理和双曲线的定义、垂直平分线的性质,结合双曲线的a,b,c的关系,可得双曲线方程【详解】解:延长F1H与PF2,交于K,连接OH,由题意可得PH为边KF1的垂直平分线,则|PF1|=|PK|,且H为KF1的中点,|OH|=|KF2|,由双曲线的定义可得|PF1|﹣|PF2|=|PK|﹣|PF2|=|F2K|=2a,则|OH|=a,又|F1F2|=6|OH|,所以2c=6a,即c=3a,b==2a,又双曲线C:﹣y2=1,知b=1,所以a=,所以双曲线的方程为8x2﹣y2=1故答案为:8x2﹣y2=114、17【解析】根据双曲线的定义求解【详解】由双曲线方程知,,,又.,所以(1舍去)故答案为:1715、##【解析】设为这3张卡片的标号相邻的组数,则的可能取值为0,1,2,利用列举法分别求出相应的概率,由此能求出随机变量的数学期望【详解】解:不透明袋中装有完全相同,标号分别为1,2,3,,8的八张卡片从中随机取出3张,共有种,设为这3张卡片的标号相邻的组数,则的可能取值为0,1,2,的情况有:,2,,,3,,,4,,,5,,,6,,,7,,共6个,,的情况有:取,另外一个数有5种取法;取,另外一个数有4种取法;取,另外一个数有4种取法;取,另外一个数有4种取法;取,另外一个数有4种取法;取,另外一个数有4种取法;取,另外一个数有5种取法的情况一共有:,,,随机变量的数学期望:故答案为:16、504【解析】分两种情况求解,一是四个数字中没有奇数,二是四个数字中有一个奇数,然后根据分类加法原理可求得结果【详解】当四个数字中没有奇数时,则这样的四位数有种,当四个数字中有一个奇数时,则从5个奇数中选一个奇数,再从4个偶数中选3个数,然后对这4个数排列即可,所以有种,所以由分类加法原理可得共有种,故答案为:504三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)根据平面得到,结合得到证明。(2)建立空间直角坐标系,计算各点坐标,计算平面的法向量,根据向量的夹角公式得到答案。【小问1详解】由于平面,平面,所以,由于,又,所以平面【小问2详解】两两垂直,建立如图所示空间直角坐标系,,,,,,设平面的一个法向量为设平面的一个法向量为,由,得,故可取所以所以二面角的平面角的余弦值18、(1)证明见解析;(2)证明见解析.【解析】(1)连结、,交于点,连结,通过即可证明;(2)通过,
可证平面,即得,进而通过平面得,结合即证.详解】证明:(1)连结、,交于点,连结,底面正方形,∴是中点,点是的中点,.平面,
平面,∴平面.(2),点是的中点,.底面是正方形,侧棱底面,∴,
,且
,∴平面,∴,又,∴平面,∴,,,平面.【点睛】本题考查线面平行和线面垂直的证明,属于基础题.19、(1)(2)0.3【解析】(1)由表格数据及参考公式即可求解;(2)由(1)中线性回归方程计算小明的视力损伤指数,再将代入视力的下降值t与视力损伤指数y满足的函数关系式即可求解.【小问1详解】解:由表格数据得:,,,,所以线性回归方程为;【小问2详解】解:小明的视力损伤指数,所以,估计小明视力的下降值为0.3.20、(1)证明见解析(2)证明见解析【解析】(1)设与交于点,连结,易证,再利用线面平行的判断定理即可证得答案;(2)利用线面垂直的判定定理可得平面,再由面面垂直的判断定理即可.【小问1详解】连接交于,连接因为底面是正方形,所以为中点,因为在中,是的中点,所以,因为平面平面,所以平面【小问2详解】侧棱底面底面,所以,因为底面是正方形,所以,因为与为平面内两条相交直线,所以平面,因为平面,所以平面平面.21、(1)(2)【解析】(1)用待定系数法求出椭圆的标准方程;(2)设直线的方程为,设,用“设而不求法”表示出和.表示出直线PB,把A关于y轴的对称点为带入后整理化简,即可得到,从而可以判断出直线恒过定点.【小问1详解】由题意可得:,解得:,所以椭圆的标准方程为:.【小问2详解】由题意可知,直线的斜率存在且不为0,设直线的方程为,设设点A关于y轴的对称点为.联立方程组,消去y可得:,所以.因为直线PB的方程为,且点D在直线PB上,所以则,所以,则,故,因为k≠0,所以,则直线l的方程为,所以直线恒过定点.22、(1)a=0.03;(2)544人;(3).【解析】(1)根据图中所有小矩形的面积之和等于1求解.
(2)根据频率分布直方图,得到成绩不低于60分的频率,再根据该校高一年级共有学生640人求解.
(3)由频率分布直方图得到成绩在[40,50)和[90,100]分数段内的人数,先列举出从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生的基本事件总数,再得到两名学生的数学成绩之差的绝对值不大于10”的基本事件数,代入古典概型概率求解.【详解】(1)∵图中所有小矩形的面积之和等于1,∴10×(0.005+0.01+0.02+a+0.025+0.01)=1,解得a=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高职护理(护理风险管理)试题及答案
- 2025年中职交通运营管理(交通调度管理)试题及答案
- 2025年大学车辆工程(汽车制造企业生产管理)试题及答案
- 2025年大学大二(人力资源管理)员工关系综合测试试题及答案
- 2025年高职建筑材料工程技术(新型建筑材料研发)试题及答案
- 2026年重庆大学附属江津医院招聘备考题库(中药调剂岗)及完整答案详解1套
- 娱乐直播介绍
- 摄影比赛教学介绍
- 2026年浙江安保管理员考试题库含答案
- 2026年母婴护理新生儿急救基础技能考核题及解析
- 骨科手术术前宣教
- 电梯安全培训课件下载
- 事业单位职工劳动合同管理规范
- 老年人静脉输液技巧
- 呼吸内科一科一品护理汇报
- 2025年公安机关人民警察基本级执法资格考试试卷及答案
- 网恋诈骗课件
- 2025年新疆第师图木舒克市公安局招聘警务辅助人员公共基础知识+写作综合练习题及答案
- 医院患者护理隐患预警及上报制度
- 2026年春节放假通知模板范文
- 非电量保护培训
评论
0/150
提交评论