版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省滁州市来安中学高二上数学期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一个动圆与定圆相外切,且与直线相切,则动圆圆心的轨迹方程为()A. B.C. D.2.“”是“方程是圆的方程”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.已知等差数列的公差为,前项和为,等比数列的公比为,前项和为.若,则()A. B.C. D.4.已知双曲线的两个焦点,,是双曲线上一点,且,,则双曲线的标准方程是()A. B.C. D.5.沙糖桔网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是()A.月收入的最大值为90万元,最小值为30万元 B.这一年的总利润超过400万元C.这12个月利润的中位数与众数均为30 D.7月份的利润最大6.已知数列满足,且,,则()A. B.C. D.7.某研究所为了研究近几年中国留学生回国人数的情况,对2014至2018年留学生回国人数进行了统计,数据如下表:年份20142015201620172018年份代码12345留学生回国人数/万36.540.943.348.151.9根据上述统计数据求得留学生回国人数(单位:万)与年份代码满足的线性回归方程为,利用回归方程预测年留学生回国人数为()A.63.14万 B.64.72万C.66.81万 D.66.94万8.已知抛物线,过抛物线的焦点作轴的垂线,与抛物线交于、两点,点的坐标为,且为直角三角形,则以直线为准线的抛物线的标准方程为()A. B.C. D.9.函数f(x)=-1+lnx,对∀x0,f(x)≥0成立,则实数a的取值范围是()A(-∞,2] B.[2,+∞)C.(-∞,1] D.[1,+∞)10.渐近线方程为的双曲线的离心率是()A.1 B.C. D.211.已知定义在R上的函数满足,且有,则的解集为()A B.C. D.12.已知等比数列的公比为正数,且,,则()A.4 B.2C.1 D.二、填空题:本题共4小题,每小题5分,共20分。13.若圆与圆相交,则的取值范围是__________.14.如图,正方体的棱长为1,C、D分别是两条棱的中点,A、B、M是顶点,那么点M到截面ABCD的距离是____________.15.已知函数在处有极值.则=________16.某几何体的三视图如图所示,则该几何体的体积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)随着生活条件的改善,人们健身意识的增强,健身器械比较畅销,某商家为了解某种健身器械如何定价可以获得最大利润,现对这种健身器械进行试销售.统计后得到其单价x(单位:百元)与销量y(单位:个)的相关数据如下表:单价x(百元/个)3035404550日销售量y(个)1401301109080(1)已知销量y与单价x具有线性相关关系,求y关于x的线性回归方程;(2)若每个健身器械的成本为25百元,试销售结束后,请利用(1)中所求的线性回归方程确定单价为多少百元时,销售利润最大?(结果保留到整数),附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.参考数据:.18.(12分)已知椭圆,过焦点且垂直于长轴的弦长为1,且焦点与短轴两端点构成等边三角形.(1)求椭圆的方程;(2)过点的直线交椭圆于,两点,交直线于点,且,.求证:为定值,并计算出该定值.19.(12分)已知二次函数.(1)若时,不等式恒成立,求实数的取值范围.(2)解关于的不等式(其中).20.(12分)已知圆C:,直线l:.(1)当a为何值时,直线l与圆C相切;(2)当直线l与圆C相交于A,B两点,且时,求直线l的方程.21.(12分)如下图,已知点是离心率为的椭圆:上的一点,斜率为的直线交椭圆于、两点,且、、三点互不重合(1)求椭圆的方程;(2)求证:直线,的斜率之和为定值22.(10分)已知数列满足,.(1)证明:数列为等差数列.(2)求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据点到直线的距离与点到点之间距离的关系化简即可.【详解】定圆的圆心,半径为2,设动圆圆心P点坐标为(x,y),动圆的半径为r,d为动圆圆心到直线的距离,即r,则根据两圆相外切及直线与圆相切的性质可得,所以,化简得:∴动圆圆心轨迹方程为故选:D2、A【解析】利用充分条件和必要条件的定义判断.【详解】若方程表示圆,则,即,解得或,故“”是“方程是圆的方程”的充分不必要条件,故选:A3、D【解析】用基本量表示可得基本量的关系式,从而可得,故可得正确的选项.【详解】若,则,而,此时,这与题设不合,故,故,故,而,故,此时不确定,故选:D.4、D【解析】根据条件设,,由条件求得,即可求得双曲线方程.【详解】设,则由已知得,,又,,又,,双曲线的标准方程为.故选:D5、B【解析】根据图形和中位数、众数的概念依次判断选项即可.【详解】A:由图可知,月收入的最大值为90,最小值为30,故A正确;B:各个月的利润分别为20,30,20,10,30,30,60,40,30,30,50,30,所以总利润为20+30+20+10+30+30+60+40+30+30+50+30=380(万元),故B错误;C:这12个月利润的中位数与众数均为30,故C正确;D:7月份的利润最大,为60万元,故D正确.故选:B6、A【解析】由已知两个不等式,利用“两边夹”思想求得,然后利用累加法可求得【详解】∵,∴,∴,又,∴,即,∴故选:A【点睛】本题考查数列的递推式,由递推式的特征,采用累加法求得数列的项.解题关键是利用“两边夹”思想求解7、D【解析】先求出样本点的中心,代入线性回归方程即可求出,再将代入线性回归方程即可得到结果【详解】由题意知:,,所以样本点的中心为,所以,解得:,可得线性回归方程为,年对应的年份代码为,令,则,所以预测2022年留学生回国人数为66.94万,故选:D.8、B【解析】设点位于第一象限,求得直线的方程,可得出点的坐标,由抛物线的对称性可得出,进而可得出直线的斜率为,利用斜率公式求得的值,由此可得出以直线为准线的抛物线的标准方程.【详解】设点位于第一象限,直线的方程为,联立,可得,所以,点.为等腰直角三角形,由抛物线的对称性可得出,则直线的斜率为,即,解得.因此,以直线为准线的抛物线的标准方程为.故选:B.【点睛】本题考查抛物线标准方程的求解,考查计算能力,属于中等题.9、B【解析】由导数求得的最小值,由最小值非负可得的范围【详解】定义域是,,若,则在上恒成立,单调递增,,不合题意;若,则时,,递减,时,,递增,所以时,取得极小值也是最小值,由题意,解得故选:B10、B【解析】根据双曲线渐近线方程可确定a,b的关系,进而求得离心率.【详解】因为双曲线近线方程为,故双曲线为等轴双曲线,则a=b,故离心率为,则,故选:B.11、A【解析】构造,应用导数及已知条件判断的单调性,而题设不等式等价于即可得解.【详解】设,则,∴在R上单调递增.又,则.∵等价于,即,∴,即所求不等式的解集为.故选:A12、D【解析】设等比数列的公比为(),则由已知条件列方程组可求出【详解】设等比数列的公比为(),由题意得,且,即,,因为,所以,,故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据圆心距小于两半径之和,大于两半径之差的绝对值列出不等式解出即可.【详解】圆的圆心为原点,半径为,圆,即的圆心为,半径为,由于两圆相交,故,即,解得,即的取值范围是,故答案为:14、【解析】由题意建立空间直角坐标系,然后结合点面距离公式即可求得点M到截面ABCD的距离.【详解】建立如图所示的空间直角坐标系,可得A(0,0,0),B(1,1,0),D(0,,1),M(0,1,0),∴(0,1,0),(1,1,0),(0,,1),设(x,y,z)为平面ABCD的法向量,则,取y=﹣2,可得x=2,z=1,∴(2,﹣2,1),∴M到截面ABCD的距离d故答案为.【点睛】本题主要考查空间直角坐标系及其应用,点面距离的计算等知识,意在考查学生的转化能力和计算求解能力.15、4【解析】根据极值点概念求解【详解】,由题意得,,经检验满足题意故答案为:416、【解析】根据三视图还原几何体,由此计算出几何体的体积.【详解】根据三视图可知,该几何体为如图所示三棱锥,所以该几何体的体积为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)确定单价为50百元时,销售利润最大.【解析】(1)根据参考公式和数据求出,进而求出线性回归方程;(2)设出定价,结合(1)求出利润,进而通过二次函数的性质求得答案.【小问1详解】由题意,,则,,结合参考数据可得,,所以线性回归方程为.【小问2详解】设定价为x百元,利润为,则,由题意,则(百元)时,最大.故确定单价为50百元时,销售利润最大.18、(1)(2)证明见解析,定值为【解析】(1)由题意得,从而写出椭圆的方程即可;(2)易知直线斜率存在,令,,,,,将直线的方程代入椭圆的方程,消去得到关于的一元二次方程,再结合根系数的关系利用向量的坐标公式即可求得值,从而解决问题.【小问1详解】(1)由条件得,所以方程为【小问2详解】易知直线斜率存在,令,,,由,因为,所以,即-1-x1因为,所以,即-4-x1由①,由②将,代入上式,得19、(1);(2)答案见解析.【解析】(1)结合分离常数法、基本不等式求得的取值范围.(2)将原不等式转化为,对进行分类讨论,由此求得不等式的解集.【详解】(1)不等式即为:,当时,可变形为:,即.又,当且仅当,即时,等号成立,,即.实数的取值范围是:.(2)不等式,即,等价于,即,①当时,不等式整理为,解得:;当时,方程的两根为:,.②当时,可得,解不等式得:或;③当时,因为,解不等式得:;④当时,因为,不等式的解集为;⑤当时,因为,解不等式得:;综上所述,不等式的解集为:①当时,不等式解集为;②当时,不等式解集为;③当时,不等式解集为;④当时,不等式解集为;⑤当时,不等式解集为.20、(1);(2)或.【解析】(1)根据圆心到直线的距离d等于圆的半径r即可求得答案;(2)由并结合(1)即可求得答案.【小问1详解】由圆:,可得,其圆心为,半径,若直线与圆相切,则圆心到直线:距离,即,可得:.【小问2详解】由(1)知圆心到直线的距离,因为,即,解得:,所以,整理可得:,解得:或,则直线的方程为或.21、(1);(2)证明见解析.【解析】(1)根据离心率为可得,把代入方程可得,又,解方程组即可求得方程;(2)设直线的方程为,整理方程组,求得,及参数的范围,由斜率公式表示出,结合直线方程和韦达定理整理即可得到定值.试题解析:(1)由题意,可得,代入得,又,解得,,所以椭圆的方程为.(2)证明:设直线的方程为,又,,三点不重合,∴,设,,由得,所以,解得,,①,②设直线,的斜率分别为,,则(),分别将①②式代入(),得,所以,即直线,的斜率之和为定值考点:椭圆的标准方程及直线与椭圆的位置关系.【方法点睛】本题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高职护理(护理风险管理)试题及答案
- 2025年中职交通运营管理(交通调度管理)试题及答案
- 2025年大学车辆工程(汽车制造企业生产管理)试题及答案
- 2025年大学大二(人力资源管理)员工关系综合测试试题及答案
- 2025年高职建筑材料工程技术(新型建筑材料研发)试题及答案
- 2026年重庆大学附属江津医院招聘备考题库(中药调剂岗)及完整答案详解1套
- 娱乐直播介绍
- 摄影比赛教学介绍
- 2026年浙江安保管理员考试题库含答案
- 2026年母婴护理新生儿急救基础技能考核题及解析
- 2025年中小学校长选拔笔试试题及答案
- 光伏发电项目设备维护合同范本
- 2026内蒙古华能扎赉诺尔煤业限责任公司招聘50人易考易错模拟试题(共500题)试卷后附参考答案
- 2025年京东慧采厂直考试京东自营供应商厂直考试题目及答案
- 周黑鸭加盟合同协议
- 黄色垃圾袋合同
- 骨科手术术前宣教
- 居住权协议书
- 病案管理考核标准表格2022版
- 中国家庭金融调查报告
- 顶板安全生产责任制
评论
0/150
提交评论