2024届云南省通海县三中数学高二上期末联考模拟试题含解析_第1页
2024届云南省通海县三中数学高二上期末联考模拟试题含解析_第2页
2024届云南省通海县三中数学高二上期末联考模拟试题含解析_第3页
2024届云南省通海县三中数学高二上期末联考模拟试题含解析_第4页
2024届云南省通海县三中数学高二上期末联考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省通海县三中数学高二上期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若数列满足,,则该数列的前2021项的乘积是()A. B.C.2 D.12.在平面上给定相异两点,设点在同一平面上且满足,当且时,点的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故我们称这个圆为阿波罗尼斯圆.现有双曲线,为双曲线的左、右顶点,为双曲线的虚轴端点,动点满足,面积的最大值为,面积的最小值为,则双曲线的离心率为()A. B.C. D.3.已知数列满足:,数列的前n项和为,若恒成立,则的取值范围是()A. B.C. D.4.攒(cuán)尖是我国古代建筑中屋顶的一种结构样式,多见于亭阁或园林式建筑.下图是一顶圆形攒尖,其屋顶可近似看作一个圆锥,其轴截面(过圆锥轴的截面)是底边长为,顶角为的等腰三角形,则该屋顶的面积约为()A. B.C. D.5.已知直线经过抛物线的焦点,且与该抛物线交于,两点,若满足,则直线的方程为()A. B.C. D.6.下列命题中正确的是()A.函数最小值为2.B.函数的最小值为2.C.函数的最小值为D.函数的最大值为7.定义“等方差数列”:如果一个数列从第二项起,每一项的平方与它的前一项的平方的差都等于同一个常数,那么这个数列就叫作等方差数列,这个常数叫作该数列的方公差.设是由正数组成的等方差数列,且方公差为4,,则数列的前24项和为()A. B.3C. D.68.已知函数,则下列说法正确的是()A.的最小正周期为 B.的图象关于直线C.的一个零点为 D.在区间的最小值为19.已知,,若不等式恒成立,则正数的最小值是()A.2 B.4C.6 D.810.已知函数,则()A. B.0C. D.111.已知椭圆是椭圆上关于原点对称的两点,设以为对角线的椭圆内接平行四边形的一组邻边斜率分别为,则()A.1 B.C. D.12.已知呈线性相关的变量x与y的部分数据如表所示:若其回归直线方程是,则()x24568y34.5m7.59A.6.5 B.6C.6.1 D.7二、填空题:本题共4小题,每小题5分,共20分。13.已知随机变量,且,则______.14.已知双曲线的左、右焦点分别为,,O为坐标原点,点M是双曲线左支上的一点,若,,则双曲线的离心率是____________15.设双曲线C:的焦点为,点为上一点,,则为_____.16.如图是一个无盖的正方体盒子展开图,A,B,C,D是展开图上的四点,BD则在正方体盒子中,AD与平面ABC所成角的正弦值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是公差不为0的等差数列,,且成等比数列(1)求数列通项公式;(2)设,求数列的前项和18.(12分)在平面直角坐标系中,△的三个顶点分别是点.(1)求△的外接圆O的标准方程;(2)过点作直线平行于直线,判断直线与圆O的位置关系,并说明理由.19.(12分)已知:,,:,,且为真命题,求实数的取值范围.20.(12分)已知函数,且在处取得极值.(1)求的值;(2)当,求的最小值.21.(12分)已知椭圆的左、右焦点分别为,,椭圆上一点满足,且的面积为(1)求椭圆的方程;(2)直线与椭圆有且只有一个公共点,过点作直线的垂线.设直线交轴于,交轴于,且点,求的轨迹方程22.(10分)已知正项等比数列的前项和为,满足,.记.(1)求数列的通项公式;(2)设数列前项和,求使得不等式成立的的最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先由数列满足,,计算出前5项,可得,且,再利用周期性即可得到答案.【详解】因为数列满足,,所以,同理可得,…所以数列每四项重复出现,即,且,而,所以该数列的前2021项的乘积是.故选:C.2、C【解析】先求动点的轨迹方程,再根据面积的最大值求得,根据的面积最小值求,由此可求双曲线的离心率.【详解】设,,,依题意得,即,两边平方化简得,所以动点的轨迹是圆心为,半径的圆,当位于圆的最高点时的面积最大,所以,解得;当位于圆的最左端时的面积最小,所以,解得,故双曲线的离心率为.故选:C.3、D【解析】由于,所以利用裂项相消求和法可求得,然后由可得恒成立,再利用基本不等式求出的最小值即可【详解】,故,故恒成立等价于,即恒成立,化简得到,因为,当且仅当,即时取等号,所以故选:D4、B【解析】由轴截面三角形,根据已知可得圆锥底面半径和母线长,然后可解.【详解】轴截面如图,其中,,所以,所以,所以圆锥的侧面积.故选:B5、C【解析】求出抛物线的焦点,设出直线方程,代入抛物线方程,运用韦达定理和向量坐标表示,解得,即可得出直线的方程.【详解】解:抛物线的焦点,设直线为,则,整理得,则,.由可得,代入上式即可得,所以,整理得:.故选:C.【点睛】本题考查直线和抛物线的位置关系,主要考查韦达定理和向量共线的坐标表示,考查运算能力,属于中档题.6、D【解析】根据基本不等式知识对选项逐一判断【详解】对于A,时为负值,故A错误对于B,,而无解,无法取等,故B错误对于,当且仅当即时等号成立,故,D正确,C错误故选:D7、C【解析】根据等方差数列的定义,结合等差数列的通项公式,运用裂项相消法进行求解即可.【详解】因为是方公差为4的等方差数列,所以,,∴,∴,∴,故选:C8、D【解析】根据余弦函数的图象与性质判断其周期、对称轴、零点、最值即可.【详解】函数,周期为,故A错误;函数图像的对称轴为,,,不是对称轴,故B错误;函数的零点为,,,所以不是零点,故C错误;时,,所以,即,所以,故D正确.故选:D9、B【解析】由基本不等式求出的最小值,只需最小值大于等于18,得到关于的不等式,求解,即可得出结论.【详解】,因为不等式恒成立,所以,即,解得,所以.故选:B.【点睛】本题考查基本不等式的应用,考查一元二次不等式的解法,属于基础题.10、B【解析】先求导,再代入求值.详解】,所以.故选:B11、C【解析】根据椭圆的对称性和平行四边形的性质进行求解即可.【详解】是椭圆上关于原点对称两点,所以不妨设,即,因为平行四边形也是中心对称图形,所以也是椭圆上关于原点对称的两点,所以不妨设,即,,得:,即,故选:C12、A【解析】根据回归直线过样本点的中心进行求解即可.【详解】由题意可得,,则,解得故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据二项分布的均值与方差的关系求得,再根据方差的性质求解即可.【详解】,所以,又因为,所以故答案为:12【点睛】本题主要考查了二项分布的均值与方差的计算,同时也考查了方差的性质,属于基础题.14、5【解析】根据得出,设,从而利用双曲线的定义可求出,的关系,从而可求出答案.【详解】设双曲线的焦距为,则,因为,所以,因为,不妨设,,由双曲线的定义可得,所以,,由勾股定理可得,,所以,所以双曲线的离心率故答案为:.15、14【解析】利用双曲线的定义求解即可【详解】由,得,则,因为点为上一点,所以,因为,所以,解得或(舍去),故答案为:1416、##【解析】先复原正方体,再构造线面角后可求正弦值.【详解】复原后的正方体如图所示,设所在面的正方形的余下的一个顶点为,连接,则平面,故为AD与平面ABC所成角,而,故为AD与平面ABC所成角的正弦值为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)设等差数列的公差为,依题意得到方程组,解得、,即可求出数列的通项公式;(2)由(1)可得,再利用分组求和法求和即可;【小问1详解】解:设等差数列的公差为,由题意,得,解得或,因为,所以【小问2详解】解:当时,,所以18、(1);(2)直线与圆O相切,理由见解析.【解析】(1)法1:设外接圆为,由点在圆上,将其代入方程求参数,即可得圆的方程;法2:利用斜率的两点式易得,则是△外接圆的直径,进而求圆心坐标、半径,即可得圆的标准方程.(2)由题设有直线垂直于x轴,根据直线平行于直线及所过的点写出直线l的方程,求圆O的圆心与直线距离,并与半径比大小,即可确定它们的位置关系.【小问1详解】法1:设过三点的圆的方程为,则,解得,所求圆的方程为,即.法2:因,所以,则是△外接圆的直径,圆心,所以所求圆的方程为.【小问2详解】因为,则直线垂直于x轴,所以直线的方程为,由(1)知:圆心到直线的距离,所以直线与圆O相切.19、【解析】由,为真,可得对任意的恒成立,从而分和求出实数的取值范围,再由,,可得关于的方程有实根,则有,从而可求出实数的取值范围,然后求交集可得结果【详解】解:可化为.若:,为真,则对任意的恒成立.当时,不等式可化为,显然不恒成立,当时,有且,所以.①若:,为真,则关于的方程有实根,所以,即,所以或.②又为真命题,故,均为真命题.所以由①②可得的取值范围为.20、(1);(2).【解析】(1)对函数求导,则极值点为导函数的零点,进而建立方程组解出a,b,然后讨论函数的单调区间进行验证,最后确定答案;(2)根据(1)得到函数在上的单调区间,进而求出最小值.【小问1详解】,因为在处取得极值,所以,则,所以时,,单调递减,时,,单调递增,时,,单调递减,故为函数的极值点.于是.【小问2详解】结合(1)可知,在上单调递减,在上单调递增,在单调递减,而,所以.因为,所以.综上:的最小值为.21、(1);(2).【解析】(1)利用可得,由椭圆关系可求得,进而得到椭圆方程;(2)将与椭圆方程联立可得,得,结合韦达定理可确定点坐标,由此可得方程,进而得到,化简整理即可得到所求轨迹方程.【小问1详解】由焦点坐标可知:;,即,,,解得:,,解得:(舍)或,,椭圆的方程为:;【小问2详解】由得:,,整理可得:;,解得:,,则,令,解得:;令,解得:;,即,又,,则的轨迹方程为:.【点睛】思路点睛:本题考查动点轨迹方程的求解问题,解题基本思路是能够利用变量表示出所求点的坐标,根据坐标之间关系,化简整理消掉变量得到所求轨迹方程;易错点是忽略题目中的限制条件,轨迹中出现多余的点.22、(1),.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论