




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届长沙市重点中学数学高二上期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.圆锥曲线具有丰富的光学性质,从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线经过椭圆的另一个焦点.直线l:与椭圆C:相切于点P,椭圆C的焦点为,,由光学性质知直线,与l的夹角相等,则的角平分线所在的直线的方程为()A. B.C. D.2.在中,内角所对的边为,若,,,则()A. B.C. D.3.抛物线的焦点坐标是A. B.C. D.4.三棱柱中,,,,若,则()A. B.C. D.5.若空间中n个不同的点两两距离都相等,则正整数n的取值A.至多等于3 B.至多等于4C.等于5 D.大于56.已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2相外切,求动圆圆心M的轨迹方程()A.x2-=1(x≤-1) B.x2-=1C.x2-=1(x1) D.-x2=17.直线y=x+1与圆x2+y2=1的位置关系为A.相切B.相交但直线不过圆心C.直线过圆心D.相离8.函数的定义域为开区间,导函数在内的图像如图所示,则函数在开区间内有极小值点()A.个 B.个C.个 D.个9.双曲线的左、右焦点分别为F1,F2,点P在双曲线上,下列结论不正确的是()A.该双曲线的离心率为B.该双曲线的渐近线方程为C.点P到两渐近线的距离的乘积为D.若PF1⊥PF2,则△PF1F2的面积为3210.在直三棱柱中,,M,N分别是,的中点,,则AN与BM所成角的余弦值为()A. B.C. D.11.设直线与双曲线(,)的两条渐近线分别交于,两点,若点满足,则该双曲线的离心率是()A. B.C. D.12.设为等差数列的前项和,若,则的值为()A.14 B.28C.36 D.48二、填空题:本题共4小题,每小题5分,共20分。13.如图,某湖有一半径为的半圆形岸边,现决定在圆心O处设立一个水文监测中心(大小忽略不计),在其正东方向相距的点A处安装一套监测设备.为了监测数据更加准确,在半圆弧上的点B以及湖中的点C处,再分别安装一套监测设备,且,.定义:四边形及其内部区域为“直接监测覆盖区域”,设.则“直接监测覆盖区域”面积的最大值为________14.设直线,直线,若,则_______.15.设变量x,y满足约束条件则的最大值为___________.16.已知椭圆的左、右焦点分别为,,P为椭圆上一点,满足(O为坐标原点).若,则椭圆的离心率为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)2021年7月25日,在东京奥运会自行车公路赛中,奥地利数学女博士安娜·基秣崔天以3小时52分45秒的成绩获得冠军,震惊了世界!广大网友惊呼“学好数理化,走遍天下都不怕”.某市对中学生的体能测试成绩与数学测试成绩进行分析,并从中随机抽取了200人进行抽样分析,得到下表(单位:人):体能一般体能优秀合计数学一般5050100数学优秀4060100合计90110200(1)根据以上数据,能否在犯错误的概率不超过0.10的前提下认为“体能优秀”还是“体能一般”与数学成绩有关?(结果精确到小数点后两位)(2)①现从抽取的数学优秀的人中,按“体能优秀”与“体能一般”这两类进行分层抽样抽取10人,然后,再从这10人中随机选出4人,求其中至少有2人是“体能优秀”的概率;②将频率视为概率,以样本估计总体,从该市中学生中随机抽取10人参加座谈会,记其中“体能优秀”的人数为X,求X的数学期望和方差参考公式:,其中参考数据:0.150.100.050.250.0102.0722.7063.8415.0246.63518.(12分)已知圆C经过、两点,且圆心在直线上(1)求圆C的方程;(2)若直线经过点且与圆C相切,求直线的方程19.(12分)已知函数.(1)当时,求的单调区间与极值;(2)若在上有解,求实数a的取值范围.20.(12分)在平面直角坐标系中,已知直线:(t为参数).以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为(1)求曲线C的直角坐标方程;(2)设点M的直角坐标为,直线l与曲线C的交点为A,B,求的值21.(12分)在平面直角坐标系中,点,直线轴,垂足为H,,圆N过点O,与l的公共点的轨迹为(1)求的方程;(2)过M的直线与交于A,B两点,若,求22.(10分)已知函数,(1)求曲线在点处的切线方程;(2)若对任意的,恒成立,求实数的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先求得点坐标,然后求得的角平分线所在的直线的方程.【详解】,直线的斜率为,由于直线,与l的夹角相等,则的角平分线所在的直线的斜率为,所以所求直线方程为.故选:A2、B【解析】利用正弦定理角化边得到,再利用余弦定理构造方程求得结果.【详解】,,由余弦定理得:,,.故选:B.3、D【解析】根据抛物线的焦点坐标为可知,抛物线即的焦点坐标为,故选D.考点:抛物线的标准方程及其几何性质.4、A【解析】利用空间向量线性运算及基本定理结合图形即可得出答案.【详解】解:由,,,若,得.故选:A.5、B【解析】先考虑平面上的情况:只有三个点的情况成立;再考虑空间里,只有四个点的情况成立,注意运用外接球和三角形三边的关系,即可判断解:考虑平面上,3个点两两距离相等,构成等边三角形,成立;4个点两两距离相等,由三角形的两边之和大于第三边,则不成立;n大于4,也不成立;空间中,4个点两两距离相等,构成一个正四面体,成立;若n>4,由于任三点不共线,当n=5时,考虑四个点构成的正四面体,第五个点,与它们距离相等,必为正四面体的外接球的球心,由三角形的两边之和大于三边,故不成立;同理n>5,不成立故选B点评:本题考查空间几何体的特征,主要考查空间两点的距离相等的情况,注意结合外接球和三角形的两边与第三边的关系,属于中档题和易错题6、A【解析】根据双曲线定义求解【详解】,则根据双曲线定义知的轨迹为的左半支故选:A第II卷(非选择题7、B【解析】求出圆心到直线的距离d,与圆的半径r比较大小即可判断出直线与圆的位置关系,同时判断圆心是否在直线上,即可得到正确答案解:由圆的方程得到圆心坐标(0,0),半径r=1则圆心(0,0)到直线y=x+1的距离d==<r=1,把(0,0)代入直线方程左右两边不相等,得到直线不过圆心所以直线与圆的位置关系是相交但直线不过圆心故选B考点:直线与圆的位置关系8、A【解析】利用极小值的定义判断可得出结论.【详解】由导函数在区间内的图象可知,函数在内的图象与轴有四个公共点,在从左到右第一个点处导数左正右负,在从左到右第二个点处导数左负右正,在从左到右第三个点处导数左正右正,在从左到右第四个点处导数左正右负,所以函数在开区间内的极小值点有个,故选:A.9、D【解析】根据双曲线的离心率、渐近线、点到直线距离公式、三角形的面积等知识来确定正确答案.【详解】由题意可知,a=3,b=4,c=5,,故离心率e,故A正确;由双曲线的性质可知,双曲线线的渐近线方程为y=±x,故B正确;设P(x,y),则P到两渐近线的距离之积为,故C正确;若PF1⊥PF2,则△PF1F2是直角三角形,由勾股定理得,由双曲线的定义可得|PF1|﹣|PF2|=2a=6(不妨取P在第一象限),∴2|PF1||PF2|=100﹣2|PF1||PF2|,解得|PF1||PF2|=32,可得,故D错误.故选:D10、D【解析】构建空间直角坐标系,根据已知条件求AN与BM对应的方向向量,应用空间向量夹角的坐标表示求AN与BM所成角的余弦值.【详解】建立如下图所示的空间直角坐标系,∴,,,,∴,,∴,所以AN与BM所成角的余弦值为.故选:D11、C【解析】先求出,的坐标,再求中点坐标,利用点满足,可得,从而求双曲线的离心率.【详解】解:由双曲线方程可知,渐近线为,分别于联立,解得:,,所以中点坐标为,因为点满足,所以,所以,即,所以.故选:C.【点睛】本题考查双曲线的离心率,考查直线与双曲线的位置关系,考查学生的计算能力,属于中档题.12、D【解析】利用等差数列的前项和公式以及等差数列的性质即可求出.【详解】因为为等差数列的前项和,所以故选:D【点睛】本题考查了等差数列的前项和公式的计算以及等差数列性质的应用,属于较易题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意,根据余弦定理得的值,则四边形的面积表示为,再代入面积公式化简为三角函数,根据三角函数的性质求解最大值即可.【详解】在中,,,,,,则(其中),当时,取最大值,所以“直接监测覆盖区域”面积的最大值.故答案为:.【点睛】解答本题的关键是将四边形的面积表示为,代入面积公式后化简得三角函数的解析式,再根据三角函数的性质求解最大值.14、##0.5【解析】根据两直线平行可得,,即可求出【详解】依题可得,,解得故答案为:15、【解析】根据线性约束条件画出可行域,把目标函数转化为,然后根据直线在轴上截距最大时即可求出答案.【详解】画出可行域,如图,由,得,由图可知,当直线过点时,有最大值,且最大值为.故答案为:.16、##【解析】由可得,再结合椭圆的性质可得为直角三角形,由题意设,则,由勾股定理可得,再结合椭圆的定义可求出离心率【详解】因为,所以,所以,因为,所以,所以为直角三角形,即,所以设,则,所以,得,因为则,所以,所以,即离心率为,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)不能,理由见解析;(2)①,②,【解析】(1)运用公式求出,比较得出结论.(2)①先用分层抽样得到“体能优秀”与“体能一般”的人数,再利用公式计算至少有2人是“体能优秀”的概率.②根据已知条件知此分布列为二项分布,故利用数学期望和方差的公式即可求出答案【小问1详解】由表格的数据可得,,故不能在犯错误的概率不超过0.10的前提下认为“体能优秀”还是“体能一般”与数学成绩有关.【小问2详解】①在数学优秀的人群中,“体能优秀”与“体能一般”的比例为“体能一般”的人数为,“体能优秀”的人数为故再从这10人中随机选出4人,其中至少有2人是“体能优秀”的概率为.②由题意可得,随机抽取一人“体能优秀”的概率为,且故,18、(1);(2)【解析】(1)根据圆心在弦的垂直平分线上,先求出弦的垂直平分线的方程与联立可求得圆心坐标,再用两点间的距离公式求得半径,进而求得圆的方程;(2)当直线斜率不存在时,与圆相切,方程为;当直线斜率存在时,设斜率为,写出其点斜式方程,利用圆心到直线的距离等于半径建立方程求解出的值.试题解析:(1)依题意知线段的中点坐标是,直线的斜率为,故线段的中垂线方程是即,解方程组得,即圆心的坐标为,圆的半径,故圆的方程是(2)若直线斜率不存在,则直线方程是,与圆相离,不合题意;若直线斜率存在,可设直线方程是,即,因为直线与圆相切,所以有,解得或所以直线的方程是或.19、(1)在上单调递减,在上单调递增,函数有极小值,无极大值(2)【解析】(1)利用导数的正负判断函数的单调性,然后由极值的定义求解即可;(2)分和两种情况分析求解,当时,不等式变形为在,上有解,构造函数,利用导数研究函数的单调性,求解的最小值,即可得到答案【小问1详解】当时,,所以当时;当时,所以在上单调递减,在上单调递增,所以当时函数有极小值,无极大值.【小问2详解】因为在上有解,所以在上有解,当时,不等式成立,此时,当时在上有解,令,则由(1)知时,即,当时;当时,所以在上单调递减,在上单调递增,所以当时,,所以,综上可知,实数a的取值范围是.点睛】利用导数研究不等式恒成立问题或有解问题的策略为:通常构造新函数或参变量分离,利用导数研究函数的单调性,求出最值从而求得参数的取值范围20、(1)(2)【解析】【小问1详解】由,得.两边同乘,即.由,得曲线的直角坐标方程为【小问2详解】将代入,得,设A,B对应的参数分别为则所以.由参数的几何意义得21、(1);(2).【解析】(1)设出圆N与l的公共点坐标,再探求出点N的坐标,并由圆的性质列出方程化简即得.(2)设出直线AB的方程,与的方程联立,结合已知条件并借助韦达定理计算作答.【小问1详解】设为圆N与l的公共点,而直线轴,垂足为H,则,又,,于是得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物业维修赔偿补充协议
- 抖音平台主播直播内容独家授权竞业禁止合同范本
- 《原创漫画改编为小说创作合同》
- 抖音平台用户数据安全审计协议
- 全职太太生活品质提升与职业回归支持协议
- 数字货币交易平台服务协议
- 大型水利枢纽工程监理补充协议书
- 夫妻忠诚协议书与股权代持权益调整及责任划分协议
- 高性能影视场刊印刷油墨租赁与专业售后服务合同
- 动作捕捉服租赁与网络游戏角色动画优化合作协议
- 2025至2030中国玻尿酸市场前景预判及未来消费规模调研报告
- 耐药菌耐药性监测策略-全面剖析
- 2025年中国陈皮市场调查研究报告
- 2024年农艺师考试考试形式试题及答案
- 老年综合评估技术应用中国专家共识解读
- 初中语文第23课《“蛟龙”探海》课件-2024-2025学年统编版语文七年级下册
- 电工技术基础 教案全套 欧小东 第1-10章 直流电路的基础知识-过渡过程
- 汽车销售礼仪与沟通技巧考核试卷
- 遗体转运协议书范本
- 挖矿委托协议书范本
- 2025年标准租房合同范本
评论
0/150
提交评论