安徽省安庆七中2024届高二上数学期末质量跟踪监视模拟试题含解析_第1页
安徽省安庆七中2024届高二上数学期末质量跟踪监视模拟试题含解析_第2页
安徽省安庆七中2024届高二上数学期末质量跟踪监视模拟试题含解析_第3页
安徽省安庆七中2024届高二上数学期末质量跟踪监视模拟试题含解析_第4页
安徽省安庆七中2024届高二上数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省安庆七中2024届高二上数学期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.曲线与曲线()的()A.长轴长相等 B.短轴长相等C.离心率相等 D.焦距相等2.在各项均为正数的等比数列中,若,则()A.6 B.12C.56 D.783.圆的圆心和半径分别是()A., B.,C., D.,4.若命题“或”与命题“非”都是真命题,则A.命题与命题都是真命题B.命题与命题都是假命题C.命题是真命题,命题是假命题D.命题是假命题,命题是真命题5.已知椭圆的中心为,一个焦点为,在上,若是正三角形,则的离心率为()A. B.C. D.6.如图所示,已知三棱锥,点,分别为,的中点,且,,,用,,表示,则等于()A. B.C. D.7.设实数,满足,则的最小值为()A.5 B.6C.7 D.88.已知直线,,,则m值为()A. B.C.3 D.109.已知椭圆上一点到椭圆一个焦点的距离是3,则点到另一个焦点的距离为()A.9 B.7C.5 D.310.在下列命题中正确的是()A.已知是空间三个向量,则空间任意一个向量总可以唯一表示为B.若所在的直线是异面直线,则不共面C.若三个向量两两共面,则共面D.已知A,B,C三点不共线,若,则A,B,C,D四点共面11.将一颗骰子先后抛掷2次,观察向上的点数,则点数之和是4的倍数但不是3的倍数的概率为()A. B.C. D.12.若命题“,”是假命题,则实数的取值范围为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则曲线在点处的切线方程为___________14.已知函数,则的导函数______.15.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图,则a=______________16.已知数列的前项和为,且满足,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系xOy中,已知点、,点M满足,记点M的轨迹为C(1)求C的方程;(2)若直线l过圆圆心D且与圆交于A,B两点,点P为C上一个动点,求的最小值18.(12分)已知圆经过坐标原点和点,且圆心在轴上.(1)求圆的方程;(2)已知直线与圆相交于A、B两点,求所得弦长的值.19.(12分)从椭圆上一点P向x轴作垂线,垂足恰为左焦点,A是椭圆C与x轴正半轴的交点,直线AP的斜率为,若椭圆长轴长为8(1)求椭圆C的方程;(2)点Q为椭圆上任意一点,求面积的最大值20.(12分)已知数列是等差数列,其前n项和为,,,数列满足(且),.(1)求和的通项公式;(2)求数列的前n项和.21.(12分)在①,②这两个条件中任选一个,补充在下面的问题中,并作答.设数列的前项和为,且__________.(1)求数列的通项公式;(2)若,求数列的前项和.22.(10分)已知为等差数列,是各项均为正数的等比数列的前n项和,,,,在①;②;③.这三个条件中任选其中一个,补充在上面的横线上,并完成下面问题的解答(如果选择多个条件解答,则按选择的第一个解答计分)(1)求数列和的通项公式;(2)求数列的前n项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】分别求出两椭圆的长轴长、短轴长、离心率、焦距,即可判断.【详解】曲线表示焦点在轴上,长轴长为,短轴长为,离心率为,焦距为;曲线表示焦点在轴上,长轴长为,短轴长为,离心率为,焦距为.对照选项可知:焦距相等.故选:D.2、D【解析】由等比数列的性质直接求得.【详解】在等比数列中,由等比数列的性质可得:由,解得:;由可得:,所以.故选:D3、D【解析】先化为标准方程,再求圆心半径即可.【详解】先化为标准方程可得,故圆心为,半径为.故选:D.4、D【解析】因为非p为真命题,所以p为假命题,又p或q为真命题,所以q为真命题,选D.5、D【解析】根据是正三角形可得的坐标,代入方程后可求离心率.【详解】不失一般性,可设椭圆的方程为:,为半焦距,为右焦点,因为且,故,故,,整理得到,故,故选:D.6、A【解析】连接,先根据已知条件表示出,再根据求得结果.【详解】连接,如下图所示:因为为的中点,所以,又因为为的中点,所以,所以,故选:A.7、A【解析】作出不等式组的可行域,利用目标函数的几何意义,利用数形结合的思想求解即可.【详解】画出约束条件的平面区域,如下图所示:目标函数可以化为,函数可以看成由函数平移得到,当直线经过点时,直线的截距最小,则,故选:8、C【解析】根据两直线垂直的充要条件得到方程,解得即可;【详解】解:因为,且,所以,解得;故选:C9、A【解析】根据椭圆定义求得即可.【详解】由椭圆定义知,点P到另一个焦点的距离为2×6-3=9.故选:A10、D【解析】对于A,利用空间向量基本定理判断,对于B,利用向量的定义判断,对于C,举例判断,对于D,共面向量定理判断【详解】对于A,若三个向量共面,在平面,则空间中不在平面的向量不能用表示,所以A错误,对于B,因为向量是自由向量,是可以自由平移,所以当所在的直线是异面直线时,有可能共面,所以B错误,对于C,当三个向量两两共面时,如空间直角坐标系中的3个基向量两两共面,但这3个向量不共面,所以C错误,对于D,因为A,B,C三点不共线,,且,所以A,B,C,D四点共面,所以D正确,故选:D11、B【解析】基本事件总数,再利用列举法求出点数之和是4的倍数但不是3的倍数包含的基本事件的个数,由此能求出点数之和是4的倍数但不是3的倍数的概率【详解】解:将一颗骰子先后抛掷2次,观察向上的点数之和,基本事件总数,点数之和是4的倍数但不是3的倍数包含的基本事件有:,,,,,,,,共8个,则点数之和是4的倍数但不是3的倍数的概率为故选:B12、A【解析】根据命题与它的否定命题一真一假,写出该命题的否定命题,再求实数的取值范围【详解】解:命题“,”是假命题,则它的否定命题“,”是真命题,时,不等式为,显然成立;时,应满足,解得,所以实数的取值范围是故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据导数的几何意义求出切线的斜率,利用点斜式求切线方程.【详解】解:因,所以,又故切线方程为,整理为,故答案为:14、【解析】利用基本初等函数的求导公式及积的求导法则计算作答.【详解】函数定义域为,则,所以.故答案为:15、3##【解析】由频率之和等于1,即矩形面积之和为1可得.【详解】由题知,解得.故答案为:0.316、【解析】根据所给的通项公式,代入求得,并由代入求得,即可求得的值.【详解】数列的前n项和,则,而,,∴,则,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)23【解析】(1)根据双曲线的定义判断轨迹,直接写出轨迹方程即可;(2)设,利用向量坐标运算计算,再由二次函数求最值即可.【小问1详解】由,则轨迹C是以点、为左、右焦点的双曲线的右支,设轨迹C的方程为,则,可得,,所以C的方程为;【小问2详解】设,则,且,圆心,则因为,则当时,取最小值23.18、(1);(2).【解析】(1)根据条件可以确定圆心坐标和半径,写出圆的方程;(2)先求圆心到直线的距离,结合勾股定理可求弦长.【详解】(1)由题意可得,圆心为(2,0),半径为2.则圆的方程为;(2)圆心(2,0)到l的距离为d,=1,.【点睛】圆的方程求解方法:(1)直接法:确定圆心,求出半径,写出方程;(2)待定系数法:设出圆的方程,可以是标准方程也可以是一般式方程,根据条件列出方程,求解系数即可.19、(1)(2)18【解析】(1)易得,,进而有,再结合已知即可求解;(2)由(1)易得直线AP的方程为,,设与直线AP平行的直线方程为,由题意,当该直线与椭圆相切时,记与AP距离比较远的直线与椭圆的切点为Q,此时的面积取得最大值,将代入椭圆方程,联立即可得与AP距离比较远的切线方程,从而即可求解.【小问1详解】解:由题意,将代入椭圆方程,得,又∵,∴,化简得,解得,又,,所以,∴,∴椭圆的方程为;【小问2详解】解:由(1)知,直线AP的方程为,即,设与直线AP平行的直线方程为,由题意,当该直线与椭圆相切时,记与AP距离比较远的直线与椭圆的切点为Q,此时的面积取得最大值,将代入椭圆方程,化简可得,由,即,解得,所以与AP距离比较远的切线方程,因为与之间的距离,又,所以的面积的最大值为20、(1),;(2).【解析】(1)根据,列方程组即可求解数列的通项公式,根据可求数列的通项公式;(2)化简,利用裂项相消法求该数列前n项和.【小问1详解】设等差数列公差为d,∵,∴,∵公差,∴.由得,即,∴数列是首项为,公比为2的等比数列,∴;【小问2详解】∵,∴,.21、(1)答案不唯一,具体见解析(2)答案不唯一,具体见解析【解析】(1)若选①:根据,利用数列通项与前n项和的关系求解;若选②:构造利用等比数列的定义求解;(2)根据(1)得到,再利用错位相减法求解.【小问1详解】解:若选①:,当时,,当时,满足上式,故若选②:易得于是数列是以为首项,2为公比的等比数列,【小问2详解】若选①:由(1)得,从而,,作差得,于是若选②

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论