




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省合肥市肥东中学2023-2024学年高二数学第一学期期末调研试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若数列满足,则的值为()A.2 B.C. D.2.以下说法:①将一组数据中的每一个数据都加上或减去同一个常数后,方差不变;②设有一个回归方程,变量增加1个单位时,平均增加5个单位③线性回归方程必过④设具有相关关系的两个变量的相关系数为,那么越接近于0,之间的线性相关程度越高;⑤在一个列联表中,由计算得的值,那么的值越大,判断两个变量间有关联的把握就越大。其中错误的个数是()A.0 B.1C.2 D.33.椭圆的长轴长为()A. B.C. D.4.已知函数的图象如图所示,则其导函数的图象大致形状为()A. B.C. D.5.已知向量,若,则()A. B.5C.4 D.6.已知等差数列{an}的前n项和为Sn,且S7=28,则a4=()A.4 B.7C.8 D.147.已知双曲线的一条渐近线方程为,它的焦距为2,则双曲线的方程为()A B.C. D.8.已知函数,则等于()A.0 B.2C. D.9.已知抛物线的焦点为F,点A在抛物线上,直线FA与抛物线的准线交于点M,O为坐标原点.若,且,则()A.1 B.2C.3 D.410.如下图,边长为2的正方体中,O是正方体的中心,M,N,T分别是棱BC,,的中点,下列说法错误的是()A. B.C. D.到平面MON的距离为111.双曲线的左顶点为,右焦点,若直线与该双曲线交于、两点,为等腰直角三角形,则该双曲线离心率为()A. B.C. D.12.已知数列的通项公式为,则()A.12 B.14C.16 D.18二、填空题:本题共4小题,每小题5分,共20分。13.与双曲线有共同的渐近线,并且经过点的双曲线方程是______14.已知曲线,则曲线在点处的切线方程为______15.已知圆,圆与轴相切,与圆外切,且圆心在直线上,则圆的标准方程为________16.数学家欧拉年在其所著的《三角形几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线,已知的顶点、,其欧拉线的方程为,则的外接圆方程为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点和圆.(1)求圆的圆心坐标和半径;(2)设为圆上的点,求的取值范围.18.(12分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AB⊥AD,BC//AD,AD=2BC=2PA=2AB=2,E,F,G分别为线段AD,DC,PB的中点.(1)证明:直线PF//平面ACG;(2)求直线PD与平面ACG所成角的正弦值.19.(12分)如图,在三棱锥中,侧面PBC是边长为2的等边三角形,M,N分别为AB,AP的中点.过MN的平面与侧面PBC交于EF(1)求证:;(2)若平面平面ABC,,求直线PB与平面PAC所成角的正弦值20.(12分)如图,在四棱锥中,,,,,为中点,且平面.(1)求点到平面的距离;(2)线段上是否存在一点,使平面?如果不存在,请说明理由;如果存在,求的值.21.(12分)已知点是圆:上任意一点,是圆内一点,线段的垂直平分线与半径相交于点(1)当点在圆上运动时,求点的轨迹的方程;(2)设不经过坐标原点,且斜率为的直线与曲线相交于,两点,记,的斜率分别是,.当,都存在且不为时,试探究是否为定值?若是,求出此定值;若不是,请说明理由22.(10分)已知数列是公比为正数的等比数列,且,.(1)求数列的通项公式;(2)若,求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】通过列举得到数列具有周期性,,所以.详解】,同理可得:,可得,则.故选:C.2、C【详解】方差反映一组数据的波动大小,将一组数据中的每个数据都加上或减去同一个常数后,方差不变,故①正确;一个回归方程,变量增加1个单位时,平均减少5个单位,故②不正确;线性回归方程必过样本中心点,故③正确;根据线性回归分析中相关系数的定义:在线性回归分析中,相关系数为r,越接近于1,相关程度越大,故④不正确;对于观察值来说,越大,“x与y有关系”的可信程度越大,故⑤正确.故选:C【点睛】本题主要考查用样本估计总体、线性回归方程、独立性检验的基本思想.3、D【解析】由椭圆方程可直接求得.【详解】由椭圆方程知:,长轴长为.故选:D.4、A【解析】利用f(x)先单调递增的速度由快到慢,再由慢到快,结合导数的几何意义判断即可.【详解】由f(x)的图象可知,函数f(x)先单调递增的速度由快到慢,再由慢到快,由导数的几何意义可知,先减后增,且恒大于0,故符合题意的只有选项A.故选:A.5、B【解析】根据向量垂直列方程,化简求得.【详解】由于,所以.故选:B6、A【解析】由等差数列的性质可知,再代入等差数列的前项和公式求解.【详解】数列{an}是等差数列,,那么,所以.故选:A.【点睛】本题考查等差数列的性质和前项和,属于基础题型.7、B【解析】根据双曲线的一条渐近线方程为,可得,再结合焦距为2和,求得,即可得解.【详解】解:因为双曲线的一条渐近线方程为,所以,即,又因焦距为2,即,即,因为,所以,所以,所以双曲线的方程为.故选:B.8、D【解析】先通过诱导公式将函数化简,进而求出导函数,然后算出答案.【详解】由题意,,故选:D.9、D【解析】设,由和在抛物线上,求出和,利用求出p.【详解】过A作AP垂直x轴与P.抛物线的焦点为,准线方程为.设,因为,所以,解得:.因为在抛物线上,则.所以,即,解得:.故选:D10、D【解析】建立空间直角坐标系,进而根据空间向量的坐标运算判断A,B,C;对D,算出平面MON的法向量,进而求出向量在该法向量方向上投影的绝对值,即为所求距离.【详解】如图建立空间直角坐标系,则.对A,,则,则A正确;对B,,则,则B正确;对C,,则C正确;对D,设平面MON的法向量为,则,取z=1,得,,所以到平面MON的距离为,则D错误.故选:D.11、A【解析】求出,分析可得,可得出关于、、的齐次等式,由此可求得该双曲线的离心率的值.【详解】联立,可得,则,易知点、关于轴对称,且为线段的中点,则,又因为为等腰直角三角形,所以,,即,即,所以,,可得,因此,该双曲线的离心率为.故选:A.12、D【解析】利用给定的通项公式直接计算即得.【详解】因数列的通项公式为,则有,所以.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设双曲线的方程为,将点代入方程可求的值,从而可得结果【详解】设与双曲线有共同的渐近线的双曲线的方程为,该双曲线经过点,所求的双曲线方程为:,整理得故答案为【点睛】本题考查双曲线的方程与简单性质,意在考查灵活应用所学知识解答问题的能力,属于中档题.与共渐近线的双曲线方程可设为,只需根据已知条件求出即可.14、【解析】利用导数求出切线的斜率即得解.【详解】解:由题得,所以切线的斜率为,所以切线的方程为即.故答案为:15、【解析】根据题干求得圆的圆心及半径,再利用圆与轴相切,与圆外切,且圆心在直线上确定圆的圆心及半径.【详解】圆的标准方程为,所以圆心,半径为由圆心在直线上,可设因为与轴相切,与圆外切,于是圆的半径为,从而,解得因此,圆的标准方程为故答案为:【点睛】判断两圆的位置关系常用几何法,即用两圆圆心距与两圆半径和与差之间的关系,一般不采用代数法.两圆相切注意讨论内切外切两种情况.16、【解析】求出线段的垂直平分线方程,与欧拉线方程联立,求出的外接圆圆心坐标,并求出外接圆的半径,由此可得出的外接圆方程.【详解】直线的斜率为,线段的中点为,所以,线段的垂直平分线的斜率为,则线段垂直平分线方程为,即,联立,解得,即的外心为,所以,的外接圆的半径为,因此,的外接圆方程为.故答案为:.【点睛】方法点睛:求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线;(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)圆心的坐标为,半径;(2)【解析】(1)利用配方法化圆的一般方程为标准方程,可得圆心坐标与半径;(2)由两点间的距离公式求得,得到与,则的取值范围可求【小问1详解】解:由,得,圆心的坐标为,半径;【小问2详解】解:,,,,的取值范围是18、(1)证明见解析(2)【解析】(1)连接EC,设EB与AC相交于点O,结合已知条件利用线面平行的判定定理可证得OG//平面PEF,再由三角形中位线定理结合线面垂直的判定定理可得AC//平面PEF,从而由面面垂直的判定可得平面PEF//平面GAC,进而可证得结论,(2)由已知可证得PA、AB、AD两两互相垂直,以A为原点,AB,AD,AP所在的直线为x轴,y轴,z轴,建立空间直角坐标系,利用空间向量求解即可【小问1详解】证明:连接EC,设EB与AC相交于点O,如图,因为BC//AD,且,AB⊥AD,所以四边形ABCE为矩形,所以O为EB的中点,又因为G为PB的中点,所以OG为△PBE的中位线,即OG∥PE,因为OG平面PEF,PE⊂平面PEF,所以OG//平面PEF,因为E,F分别为线段AD,DC的中点,所以EF//AC,因为AC平面PEF,EF⊂平面PEF,所以AC//平面PEF,因为OG⊂平面GAC,AC⊂平面GAC,AC∩OG=O,所以平面PEF//平面GAC,因为PF⊂平面PEF,所以PF//平面GAC.【小问2详解】因为PA⊥底面ABCD,AB⊂平面ABCD,AD⊂平面ABCD,所以PA⊥AB,PA⊥AD,因为AB⊥AD,所以PA、AB、AD两两互相垂直,以A为原点,AB,AD,AP所在的直线为x轴,y轴,z轴,建立空间直角坐标系,如图所示:则A(0,0,0),,C(1,1,0),D(0,2,0),P(0,0,1),所以,设平面ACG的法向量为,则,所以,令x=1,可得y=﹣1,z=﹣1,所以,设直线PD与平面ACG所成角为θ,则,所以直线PD与平面ACG所成角的正弦值为.19、(1)证明见解析(2)【解析】(1)由题意先证明平面PBC,然后由线面平行的性质定理可证明.(2)由平面平面ABC,取BC中点O,则平面ABC,可得,由条件可得,以O坐标原点,分别以OB,AO,OP为x,y,z轴建立空间直角坐标系,利用向量法求解即可.【小问1详解】因为M,N分别为AB,AP的中点,所以,又平面PBC,所以平面PBC,因为平面平面,所以【小问2详解】因为平面平面ABC,取BC中点O,连接PO,AO,因为是等边三角形,所以,所以平面ABC,故,又因,所以,以O为坐标原点,分别以OB,AO,OP为x,y,z轴建立空间直角坐标系,可得:,,,,,所以,,,设平面PAC的法向量为,则,则,令,得,,所以,所以直线PB与平面PAC所成角的正弦值为20、(1)(2)线段上存在一点,当时,平面.【解析】(1)设点到平面的距离为,则由,由体积法可得答案.(2)由(1)连接,可得则从而平面,过点作交于点,连接,可证明平面平面,从而可得出答案.【小问1详解】由,,为中点,则由平面,平面,则又,且,则平面又,则平面,且都在平面内所以所以,取的中点,连接,则,所以,所以所以所以则设点到平面的距离为,则由即,即【小问2详解】线段上是否存在一点,使平面.由(1)连接,则四边形为平行四边形,则过点作交于,则为中点,则为的中点,即又平面,则平面过点作交于点,连接,则,即又平面,所以平面又,所以平面平面又平面,所以平面所以线段上存在一点,当时,平面.21、(1);(2)是定值,.【解析】(1)根据给定条件探求得,再借助椭圆定义直接求得轨迹的方程.(2)设出直线的方程,再与轨迹的方程联立,借助韦达定理计算作答.【小问1详解】圆:的圆心,半径,因线段的垂直平分线与半径相交于点,则,而,于是得,因此,点的轨迹是以C,A为左右焦点,长轴长为4的椭圆,短半轴长有,所以轨迹的方程为.【小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 心理健康试题及答案大全
- 如何建立电商与农业的协同发展机制试题及答案
- 基于SDN的工业互联网平台智能生产质量优化与集成报告
- 金融机构2025年数字化转型中的风险管理与内部控制
- 家具行业理论基础与实际应用结合试题及答案
- 自主品牌电动汽车的竞争优势试题及答案
- 文化素养与数学的试题及答案
- 物理考试复习的最终冲刺试题及答案
- 四川省泸州市天立国际学校2025年高三第5次月考试题语文试题试卷含解析
- 建筑施工安全责任制落实的重要步骤试题及答案
- 烟台某公寓电气设计毕业论文
- 2022全国高考真题化学汇编:专题 烃 卤代烃
- 脑血管病介入诊疗并发症及其处理课件
- 家校共育一年级家长会ppt
- 《微电子学概论》第八章-光电子器件课件
- 化学分析送样单2
- 化工原理教案:6 吸收
- 【高考真题】2022年新高考浙江语文高考真题试卷(Word版含答案)
- 铝镁料仓等施工方案精品
- 目前最准确的通达信缠论分笔公式
- 《丑小鸭》教学设计
评论
0/150
提交评论