




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
德阳市重点中学2024届高二数学第一学期期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数,当自变量t由2变到2.5时,函数的平均变化率是()A.5.25 B.10.5C.5.5 D.112.已知双曲线的左、右焦点分别为,,点在双曲线的右支上,且,则双曲线离心率的取值范围是()A. B.C. D.3.若直线的倾斜角为120°,则直线的斜率为()A. B.C. D.4.已知两定点和,动点在直线上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的短轴的最小值为()A. B.C. D.5.已知椭圆经过点,当该椭圆的四个顶点构成的四边形的周长最小时,其标准方程为()A. B.C. D.6.若函数的图象如图所示,则函数的导函数的图象可能是()A. B.C D.7.执行如图所示的程序框图,若输出的,则输人的()A. B.或C. D.或8.在区间内随机取一个数x,则使得的概率为()A. B.C. D.9.已知等比数列的首项为1,公比为2,则=()A. B.C. D.10.已知椭圆的左焦点是,右焦点是,点P在椭圆上,如果线段的中点在y轴上,那么()A.3:5 B.3:4C.5:3 D.4:311.已知圆C过点,圆心在x轴上,则圆C的方程为()A. B.C. D.12.已知动点的坐标满足方程,则的轨迹方程是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知圆,则圆心坐标为______.14.已知等差数列的前项和为,若,,则数列的前2021项和为___________.15.若平面内两条直线,平行,则实数______16.在空间直角坐标系中,已知,,,,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)城南公园种植了4棵棕榈树,各棵棕榈树成活与否是相互独立的,成活率为p,设为成活棕榈树的株数,数学期望.(1)求p的值并写出的分布列;(2)若有2棵或2棵以上的棕榈树未成活,则需要补种,求需要补种棕榈树的概率.18.(12分)2021年国务院政府工作报告中指出,扎实做好碳达峰、碳中和各项工作,制定2030年前碳排放达峰行动方案,优化产业结构和能源结构.汽车行业是碳排放量比较大的行业之一,若现对CO2排放量超过130g/km的MI型新车进行惩罚(视为排放量超标),某检测单位对甲、乙两类MI型品牌的新车各抽取了5辆进行CO2排放量检测,记录如下(单位:g/km):甲80110120140150乙100120xy160经测算发现,乙类品牌车CO2排放量的均值为乙=120g/km.(1)求甲类品牌汽车的排放量的平均值及方差;(2)若乙类品牌汽车比甲类品牌汽车CO2的排放量稳定性好,求x的取值范围.19.(12分)已知数列是公差为2的等差数列,且满足,,成等比数列(1)求数列的通项公式;(2)求数列的前n项和20.(12分)已知等差数列各项均不为零,为其前项和,点在函数的图像上.(1)求的通项公式;(2)若数列满足,求的前项和;(3)若数列满足,求的前项和的最大值、最小值.21.(12分)在下列所给的三个条件中任选一个,补充在下面问题中,并完成解答(若选择多个条件分别解答,则按第一个解答计分).①与直线平行;②与直线垂直;③直线l的一个方向向量为;已知直线l过点,且___________.(1)求直线l的一般方程;(2)若直线l与圆C:相交于M,N两点,求弦长.22.(10分)在下面两个条件中任选一个条件,补充在后面问题中的横线上,并完成解答.条件①:展开式前三项的二项式系数的和等于37;条件②:第3项与第7项的二项式系数相等;问题:在二项式的展开式中,已知__________.(1)求展开式中二项式系数最大的项;(2)设,求的值;(3)求的展开式中的系数.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用平均变化率的公式即得.【详解】∵,∴.故选:B.2、C【解析】根据双曲线的定义求得,利用可得离心率范围【详解】因为,又,所以,,又,即,,所以离心率故选:C3、B【解析】求得倾斜角的正切值即得【详解】k=tan120°=.故选:B4、B【解析】根据题意,点关于直线对称点的性质,以及椭圆的定义,即可求解.【详解】根据题意,设点关于直线的对称点,则,解得,即.根据椭圆的定义可知,,当、、三点共线时,长轴长取最小值,即,由且,得,因此椭圆C的短轴的最小值为.故选:B.5、A【解析】把点代入椭圆方程得,写出椭圆顶点坐标,计算四边形周长讨论它取最小值时的条件即得解.【详解】依题意得,椭圆的四个顶点为,顺次连接这四个点所得四边形为菱形,其周长为,,当且仅当,即时取“=”,由得a2=12,b2=4,所求标准方程为.故选:A【点睛】给定两个正数和(两个正数倒数和)为定值,求这两个正数倒数和(两个正数和)的最值问题,可借助基本不等式中“1”的妙用解答.6、C【解析】由函数的图象可知其单调性情况,再由导函数与原函数的关系即可得解.【详解】由函数的图象可知,当时,从左向右函数先增后减,故时,从左向右导函数先正后负,故排除AB;当时,从左向右函数先减后增,故时,从左向右导函数先负后正,故排除D.故选:C.7、A【解析】根据题意可知该程序框图显示的算法函数为,分和两种情况讨论即可得解.【详解】解:该程序框图显示得算法函数为,由,当时,,方程无解;当时,,解得,综上,若输出的,则输入的.故选:A.8、A【解析】解一元一次不等式求不等式在上解集,再利用几何概型的长度模型求概率即可.【详解】由,可得,其中长度为1,而区间长度为4,所以,所求概率为故选:A.9、D【解析】数列是首项为1,公比为4的等比数列,然后可算出答案.【详解】因为等比数列的首项为1,公比为2,所以数列是首项为1,公比为4的等比数列所以故选:D10、A【解析】求出椭圆的焦点坐标,再根据点在椭圆上,线段的中点在轴上,求得点坐标,进而计算,从而求解.【详解】由椭圆方程可得:,设点坐标为,线段的中点为,因为线段中点在轴上,所以,即,代入椭圆方程得或,不妨取,则,所以,故选:A.11、C【解析】设出圆的标准方程,将已知点的坐标代入,解方程组即可.【详解】设圆的标准方程为,将坐标代入得:,解得,故圆的方程为,故选:C.12、C【解析】此方程表示点到点的距离与到点的距离之差为8,而这正好符合双曲线的定义,点的轨迹是双曲线的右支,,的轨迹方程是,故选C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】将圆的一般方程配方程标准方程即可.【详解】圆,即,它的圆心坐标是.故答案为:.14、【解析】根据题意求出,代入中,再利用裂项相消即可求出答案.【详解】由是等差数列且,可知:,故.,数列的前2021项和为.故答案为:.15、-1或2【解析】根据两直线平行,利用直线平行的条件列出方程解得答案.【详解】∵,∴,解得或,经验证都符合题意,故答案为:-1或216、或##或【解析】根据向量平行时坐标的关系和向量的模公式即可求解.【详解】,且,设,,解得,或.故答案为:或.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),分布列见解析;(2).【解析】(1)根据二项分布知识即可求解;(2)将补种棕榈树的概率转化为成活的概率,结合概率加法公式即可求解.【小问1详解】由题意知,,又,所以,故未成活率为,由于所有可能的取值为0,1,2,3,4,所以,,,,,则的分布列为01234【小问2详解】记“需要补种棕榈树”为事件A,由(1)得,,所以需要补种棕榈树的概率为.18、(1),600(2)【解析】用平均数及方差公式计算即可.用平均值得、之间的关系,再由,解不等式可得解.【小问1详解】甲类品牌汽车的排放量的平均值,甲类品牌汽车的排放量的方差.【小问2详解】由题意知乙类品牌汽车的排放量的平均值=120(g/km),得x+y=220,故y=220-x,所以乙类品牌汽车的排放量的方差,因为乙类品牌汽车比甲类品牌汽车的排放量稳定性好,所以,解得.19、(1)(2)【解析】(1)由成等比数列得首项,从而得到通项公式;(2)利用裂项相消求和可得答案.【小问1详解】设数列的公差为,∵成等比数列,∴,即,∴,由题意故,得,即.【小问2详解】,∴20、(1)(2)(3)最大值为,最小值为【解析】(1)将点代入函数解析再结合前和即可求解;(2)运用错位相减法或分组求和法都可以求解;(3)将数列的通项变形为,再求和,通过分类讨论从单调性上分析求解即可.【小问1详解】因为点在函数的图像上,所以,又数列是等差数列,所以,即所以,;【小问2详解】解法1:,==,解法2:,①,②①-②得,;【小问3详解】记的前n项和为,则=,当n为奇数时随着n的增大而减小,可得,当n为偶数时随着n增大而增大,可得,所以的最大值为,最小值为.21、(1)若选择①②,则直线方程为:;若选择③,则直线方程为;(2)若选择①②,则;若选择③,则.【解析】(1)根据所选择的条件,结合直线过点,即可写出直线的方程;(2)利用(1)中所求直线方程,以及弦长公式,即可求得结果.【小问1详解】若选①与直线平行,则直线的斜率;又其过点,故直线的方程为,则其一般式为;若选②与直线垂直,则直线的斜率满足,解得;又其过点,故直线的方程为,则其一般式为;若选③直线l的一个方向向量为,则直线的斜率;又其过点,故直线的方程为,则其一般式为;综上所述:若选择①②,则直线方程为:;若选择③,则直线方程为.【小问2详解】对圆C:,其圆心为,半径,根据(1)中所求,若选择①②,则直线方程为,则圆心到直线的距离,则直线截圆所得弦长;若选择③,则直线方程为,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电脑知识培训博客课件
- 电脑相关知识培训文档课件
- 电脑服务专业知识培训课件
- 电脑文员入门知识培训课件
- 电脑操作知识培训课件
- servsafe考试题及答案
- 诗歌鉴赏之表达技巧2讲课文档
- 广西崇左市宁明县2022-2023学年九年级上学期期中化学试题(含答案)
- 电生磁优翼课件
- 高端全能月子管家课件
- 三洋洗衣机XQB60-M808使用说明书
- 中国新能源汽车电池托盘行业市场全景调研及前景战略研判报告
- 化学实验室试剂采购与管理考核试卷
- DB11T 334.5-2019 公共场所中文标识英文译写规范 第5部分:医疗卫生
- TB10104-2003 铁路工程水质分析规程
- DL∕ T 802.7-2010 电力电缆用导管技术条件 第7部分:非开挖用改性聚丙烯塑料电缆导管
- (正式版)CB∕T 4557-2024 船舶行业企业劳动防护用品配备要求
- 突发环境事件应急预案编制要点及风险隐患排查重点课件
- DL-T-1928-2018火力发电厂氢气系统安全运行技术导则
- JT-T-325-2018营运客运类型划分及等级评定
- 14J936变形缝建筑构造
评论
0/150
提交评论