




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省宿州市汴北三校联考2024届高二上数学期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.双曲线的光学性质如下:如图1,从双曲线右焦点发出的光线经双曲线镜面反射,反射光线的反向延长线经过左焦点.我国首先研制成功的“双曲线新闻灯”,就是利用了双曲线的这个光学性质.某“双曲线灯”的轴截面是双曲线一部分,如图2,其方程为,分别为其左、右焦点,若从右焦点发出的光线经双曲线上的点A和点B反射后(,A,B在同一直线上),满足,则该双曲线的离心率的平方为()A. B.C. D.2.在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例.在西方,最早提出并证明此定理的为公元前世纪古希腊的毕达哥拉斯学派,他们用演绎法证明了直角三角形斜边平方等于两直角边平方之和.若一个直角三角形的斜边长等于则这个直角三角形周长的最大值为()A. B.C. D.3.已知是定义在上的函数,其导函数为,且,且,则不等式的解集为()A. B.C. D.4.已知命题:若直线的方向向量与平面的法向量垂直,则;命题:等轴双曲线的离心率为,则下列命题是真命题的是()A. B.C. D.5.在中,B=60°,,,则AC边的长等于()A. B.C. D.6.等差数列中,已知,则()A.36 B.27C.18 D.97.若抛物线焦点与椭圆的右焦点重合,则的值为A. B.C. D.8.如图,四棱锥中,底面是边长为的正方形,平面,为底面内的一动点,若,则动点的轨迹在()A.圆上 B.双曲线上C.抛物线上 D.椭圆上9.的展开式中,常数项为()A. B.C. D.10.已知两个向量,,且,则的值为()A.1 B.2C.4 D.811.某种疾病的患病率为0.5%,通过验血诊断该病的误诊率为2%,即非患者中有2%的人验血结果为阳性,患者中有2%的人验血结果为阴性,随机抽取一人进行验血,则其验血结果为阳性的概率为()A.0.0689 B.0.049C.0.0248 D.0.0212.直线与直线交于点Q,m是实数,O为坐标原点,则的最大值是()A.2 B.C. D.4二、填空题:本题共4小题,每小题5分,共20分。13.设分别是平面的法向量,若,则实数的值是________14.设a为实数,若直线与直线平行,则a值为______.15.在中,内角,,的对边分别为,,,若,且,则_______16.经过点,,的圆的方程为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在等差数列中,已知且(1)求的通项公式;(2)设,求数列前项和18.(12分)某小学调查学生跳绳的情况,在五年级随机抽取了100名学生进行测试,得到频率分布直方图如下,且规定积分规则如下表:每分钟跳绳个数得分17181920(1)求频率分布直方图中,跳绳个数在区间的小矩形的高;(2)依据频率分布直方图,把第40百分位数划为合格线,低于合格分数线的学生需补考,试确定本次测试的合格分数线;(3)依据积分规则,求100名学生的平均得分.19.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率,若不能,说明理由20.(12分)已知数列的前n项和为满足(1)求证:是等比数列,并求数列通项公式;(2)若,数列的前项和为.求证:21.(12分)已知抛物线C:上一点与焦点F的距离为(1)求和p的值;(2)直线l:与C相交于A,B两点,求直线AM,BM的斜率之积22.(10分)已知四边形是空间直角坐标系中的一个平行四边形,且,,(1)求点的坐标;(2)求平行四边形的面积
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设,根据题意可得,由双曲线定义得、,进而求出(用表示),然后在中,应用勾股定理得出关系,求得离心率【详解】易知共线,共线,如图,设,则.因为,所以,则,则,又因为,所以,则,在中,,即,所以.故选:D2、C【解析】设直角三角形的两条直角边边长分别为,则,根据基本不等式求出的最大值后,可得三角形周长的最大值.【详解】设直角三角形的两条直角边边长分别为,则.因为,所以,所以,当且仅当时,等号成立.故这个直角三角形周长的最大值为故选:C3、B【解析】令,再结合,和已知条件将问题转化为,最后结合单调性求解即可.【详解】解:令,则,因为,所以,即函数为上的增函数,因为,不等式可化为,所以,故不等式的解集为故选:B4、D【解析】先判断出p、q的真假,再分别判断四个选项的真假.【详解】因为“若直线的方向向量与平面的法向量垂直,则或”,所以p为假命题;对于等轴双曲线,,所以离心率为,所以q为真命题.所以假命题,故A错误;为假命题,故B错误;为假命题,故C错误;为真命题,故D正确.故选:D5、B【解析】根据正弦定理直接计算可得答案.【详解】由正弦定理,,得,故选:B.6、B【解析】直接利用等差数列的求和公式及等差数列的性质求解.【详解】解:由题得.故选:B7、D【解析】解:椭圆的右焦点为(2,0),所以抛物线的焦点为(2,0),则,故选D8、A【解析】根据题意,得到两两垂直,以点为坐标原点,分别以为轴,建立空间直角坐标系,设,由题意,得到,,再由得到,求出点的轨迹,即可得出结果.【详解】由题意,两两垂直,以点为坐标原点,分别以为轴,建立如图所示的空间直角坐标系,因为底面是边长为的正方形,则,,因为为底面内的一动点,所以可设,因此,,因为平面,所以,因此,所以由得,即,整理得:,表示圆,因此,动点的轨迹在圆上.故选:A.【点睛】本题主要考查立体几何中的轨迹问题,灵活运用空间向量的方法求解即可,属于常考题型.9、A【解析】写出展开式通项,令的指数为零,求出参数的值,代入通项计算即可得解.【详解】的展开式通项为,令,可得,因此,展开式中常数项为.故选:A.10、C【解析】由,可知,使,利用向量的数乘运算及向量相等即可得解.【详解】∵,∴,使,得,解得:,所以故选:C【点睛】思路点睛:在解决有关平行的问题时,通常需要引入参数,如本题中已知,引入参数,使,转化为方程组求解;本题也可以利用坐标成比例求解,即由,得,求出m,n.11、C【解析】根据全概率公式即可求出【详解】随机抽取一人进行验血,则其验血结果为阳性的概率为0.0248故选:C12、B【解析】求出两直线的交点坐标,结合两点间的距离公式得到,进而可以求出结果.【详解】因为与的交点坐标为所以,当时,,所以的最大值是,故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】根据分别是平面的法向量,且,则有求解.【详解】因为分别是平面的法向量,且所以所以解得故答案为:4【点睛】本题主要考查空间向量垂直,还考查了运算求解的能力,属于基础题.14、【解析】根据两直线平行得到,解方程组即可求出结果.【详解】由题意可知,解得,故答案为:.15、【解析】代入,展开整理得,①化为,与①式相加得,转化为关于的方程,求解即可得出结论.【详解】因为,所以,所以,因为,所以,则,整理得,解得.故答案为:.【点睛】本题考查正弦定理的边角互化,考查三角函数化简求值,属于中档题.16、【解析】设所求圆的方程为,然后将三个点的坐标代入方程中解方程组求出的值,可得圆的方程【详解】设所求圆的方程为,则,解得,所以圆的方程为,即,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由等差数列基本量的计算即可求解;(2)由裂项相消求和法即可求解.【小问1详解】解:由题意,设等差数列的公差为,则,,解得,;【小问2详解】解:,.18、(1)(2)(3)分【解析】(1)根据频率之和为列方程来求得跳绳个数在区间的小矩形的高.(2)根据百分位数的计算方法计算出合格分数线.(3)根据平均数的求法求得名学生的平均得分.【小问1详解】设跳绳个数在区间的小矩形的高为,则,解得.【小问2详解】第一组的频率为,第二组的频率为,第三组的频率为,第四组的频率为,第五组的频率为,第六组的频率为,所以第百分位数为.也即合格分数线为.【小问3详解】名学生的平均得分为分.19、(1)证明见解析(2)能为平行四边形;斜率为4-或4+【解析】(1)设两点坐标,由点差法证明(2)求出两点坐标,由平行四边形的几何性质判断【小问1详解】设的斜率为,,两式相减可得,即故【小问2详解】由(1)得的直线为,直线方程为联立,解得联立解得若四边形OAPB为平行四边形,则对角线互相平分为中点,解得,经检验,均符合题意故四边形OAPB能为平行四边形,此时斜率为4-或4+20、(1)证明见解析,(2)证明见解析【解析】(1)令可求得的值,令,由可得,两式作差可得,利用等比数列的定义可证得结论成立,确定该数列的首项和公比,可求得数列的通项公式;(2)求得,利用错位相减法可求得,结合数列的单调性可证得结论成立.【小问1详解】证明:当时,,解得,当时,由可得,上述两个等式作差得,所以,,则,因为,则,可得,,,以此类推,可知对任意的,,所以,,因此,数列是等比数列,且首项为,公比为,所以,,解得.【小问2详解】证明:,则,其中,所以,数列为单调递减数列,则,,,上式下式,得,所以,,因此,.21、(1)(2)【解析】(1)结合抛物线的定义以及点坐标求得以及.(2)求得的坐标,由此求得直线AM,BM的斜率之
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上海农林职业技术学院《学前儿童五大领域教育及活动设计》2023-2024学年第二学期期末试卷
- 2025年中学语文教师资格证考试试卷及答案
- 心理健康教育与2025年相关考核题目及答案
- 网络技术与应用2025年考试试卷及答案
- 2025年中学教师资格考试试题及答案
- 山东省济南市实验中学2025年高三第四次模拟考试:历史试题试卷含解析
- 江苏省句容市崇明中学2025年初三中考适应性月考数学试题(一)含解析
- 2025年注册会计师考试试卷及答案呈现
- 内蒙古科技职业学院《AutoCAD1》2023-2024学年第二学期期末试卷
- 上海市丰华中学2024-2025学年高三下学期第一次月考-生物试题含解析
- 教育质量评价模型与算法研究
- 广东省深圳市南山区2024年八年级下学期语文期末语文试卷附答案
- 辽宁省沈阳市第一二六中学2023-2024学年七年级下学期期中数学试题
- 国家开放大学-法学专业-2023年秋季《法律文化》形成性考核作业答案
- VR全景图片拍摄与漫游 习题及答案 尹敬齐
- 《纺织材料生产》课件-项目6:纺丝工段
- 车辆维修保养服务 投标方案(技术方案)
- 2023-2024学年人教版八年级下册数学期中复习试卷
- 高考数学专题:导数大题专练(含答案)
- 部编版八年级语文下册第11课《核舟记》教学课件
- 角膜溃疡护理常规
评论
0/150
提交评论