




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市丰台区市级名校2023-2024学年高二数学第一学期期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在数列中,若,,则()A.16 B.32C.64 D.1282.“”是“方程表示双曲线”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.球O为三棱锥的外接球,和都是边长为的正三角形,平面PBC平面ABC,则球的表面积为()A. B.C. D.4.已知双曲线C:-=1的焦距为10,点P(2,1)在C的渐近线上,则C的方程为A.-=1 B.-=1C.-=1 D.-=15.已知点,则满足点到直线的距离为,点到直线距离为的直线的条数有()A.1 B.2C.3 D.46.一动圆与圆外切,而与圆内切,那么动圆的圆心的轨迹是()A.椭圆 B.双曲线C.抛物线 D.双曲线的一支7.如图,在四棱锥中,平面,,,则点到直线的距离为()A. B.C. D.28.双曲线与椭圆的焦点相同,则等于()A.1 B.C.1或 D.29.现有4本不同的书全部分给甲、乙、丙3人,每人至少一本,则不同的分法有()A.12种 B.24种C.36种 D.48种10.已知椭圆的焦点分别为,,椭圆上一点P与焦点的距离等于6,则的面积为()A.24 B.36C.48 D.6011.通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由附表:0.0500.0100.0013.8416.63510.828参照附表,得到的正确结论是()A.有99%以上的把握认为“爱好该项运动与性别有关”B.有99%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”12.过点且斜率为的直线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的渐近线方程为,,分别为C的左,右焦点,若动点P在C的右支上,则的最小值是______14.已知变量X,Y的一组样本数据如下表所示,其中有一个数据丢失,用a表示.若根据这组样本利用最小二乘法求得的Y关于X的回归直线方程为,则_________.X1491625Y2a369314215.已知某地区内猫的寿命超过10岁的概率为0.9,超过12岁的概率为0.6,那么该地区内,一只寿命超过10岁的猫的寿命超过12岁的概率为___________.16.圆关于直线对称的圆的方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面ABCD为矩形,侧面PAD是正三角形,平面平面ABCD,M是PD的中点(1)证明:平面PCD;(2)若PB与底面ABCD所成角的正切值为,求二面角的正弦值18.(12分)已知数列的前项和为,,.(1)求的通项公式;(2)求数列的前项和;(3)若数列,,求前项和.19.(12分)已知圆C过两点,,且圆心C在直线上(1)求圆C的方程;(2)过点作圆C的切线,求切线方程20.(12分)已知椭圆过点,且离心率(1)求椭圆的方程;(2)设点为椭圆的左焦点,点,过点作的垂线交椭圆于点,,连接与交于点①若,求;②求的值21.(12分)一项“过关游戏”规则规定:在第关要抛掷一颗正六面体骰子次,每次掷得的点数均相互独立,如果这次抛掷所出现的点数之和大于,则算过关.(1)这个游戏最多过几关?(2)某人连过前两关的概率是?(3)某人连过前三关的概率是?22.(10分)如图,第1个图形需要4根火柴,第2个图形需要7根火柴,,设第n个图形需要根火柴(1)试写出,并求;(2)记前n个图形所需的火柴总根数为,设,求数列的前n项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据题意,为等比数列,用基本量求解即可.【详解】因为,故是首项为2,公比为2的等比数列,故.故选:C2、A【解析】方程表示双曲线则,解得,是“方程表示双曲线”的充分不必要条件.故选:A3、B【解析】取中点为T,以及的外心为,的外心为,依据平面平面可知为正方形,然后计算外接球半径,最后根据球表面积公式计算.【详解】设中点为T,的外心为,的外心为,如图由和均为边长为的正三角形则和的外接圆半径为,又因为平面PBC平面ABC,所以平面,可知且,过分别作平面、平面的垂线相交于点即为三棱锥的外接球的球心,且四边形是边长为的正方形,所以外接球半径,则球的表面积为,故选:B4、A【解析】由题意得,双曲线的焦距为,即,又双曲线的渐近线方程为,点在的渐近线上,所以,联立方程组可得,所以双曲线的方程为考点:双曲线的标准方程及简单的几何性质5、D【解析】以为圆心,为半径,为圆心,为半径分别画圆,将所求转化为求圆与圆的公切线条数,判断两圆的位置关系,从而得公切线条数.【详解】以为圆心,为半径,为圆心,为半径分别画圆,如图所示,由题意,满足点到直线的距离为,点到直线距离为的直线的条数即为圆与圆的公切线条数,因为,所以两圆外离,所以两圆的公切线有4条,即满足条件的直线有4条.故选:D【点睛】解答本题的关键是将满足点到直线的距离为,点到直线距离为的直线的条数转化为圆与圆的公切线条数,从而根据圆与圆的位置关系判断出公切线条数.6、A【解析】依据定义法去求动圆的圆心的轨迹即可解决.【详解】设动圆的半径为r,又圆半径为1,圆半径为8,则,,可得,又则动圆的圆心的轨迹是以为焦点长轴长为9的椭圆.故选:A7、A【解析】如图,以为坐标原点,建立空间直角坐标系,然后利用空间向量求解即可【详解】因为平面,平面,平面,所以,,因为所以如图,以为坐标原点,建立空间直角坐标系,则,,,,,即.在上的投影向量的长度为,故点到直线的距离为.故选:A8、A【解析】根据双曲线方程形式确定焦点位置,再根据半焦距关系列式求参数.【详解】因为双曲线的焦点在轴上,所以椭圆焦点在轴上,依题意得解得.故选:A9、C【解析】先把4本书按2,1,1分为3组,再全排列求解.【详解】先把4本书按2,1,1分为3组,再全排列,则有种分法,故选:C10、A【解析】由题意可得出与、、的值,在根据椭圆定义得的值,即可得到是直角三角形,即可求出的面积.【详解】由题意知,.根据椭圆定义可知,是直角三角形,.故选:A.11、A【解析】由,而,故由独立性检验的意义可知选A12、B【解析】利用点斜式可得出所求直线的方程.【详解】由题意可知所求直线的方程为,即.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】首先根据双曲线的渐近线方程和焦点坐标,求出双曲线的标准方程;设,根据双曲线的定义可知,从而利用基本不等式即可求出的最小值.【详解】因为双曲线的渐近线方程为,焦点坐标为,,所以,即,所以双曲线方程为.设,则,且,,当且仅当,即时等号成立,所以的最小值是.故答案为:.14、17【解析】根据回归直线必过样本点中心即可解出【详解】因为,,所以,解得故答案为:1715、【解析】根据条件概率公式求解即可.【详解】设事件A:猫的寿命超过10岁,事件B:猫的寿命超过12岁.依题意有,,则一只寿命超过10岁猫的寿命超过12岁的概率.故答案为:16、【解析】求出圆心关于直线对称点,从而求出对称圆的方程.【详解】圆心为,半径为1,设关于对称点为,则,解得:,故对称点为,故圆关于直线对称的圆的方程为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)依题意可得,再根据面面垂直的性质得到平面,即可得到,即可得证;(2)取的中点为,连接,根据面面垂直的性质得到平面,连接,即可得到为与底面所成角,令,,利用锐角三角函数的定义求出,建立如图所示空间直角坐标系,利用空间向量法求出二面角的余弦值,即可得解;【小问1详解】解:证明:在正中,为的中点,∴∵平面平面,平面平面,且.∴平面,又∵平面∴.又∵,且,平面.∴平面【小问2详解】解:如图,取的中点为,连接,在正中,,平面平面,平面平面,∴平面,连接,则为与底面所成角,即.不妨取,,,,∴以为原点建立如图所示的空间直角坐标系,则有,,,,,,∴,设面的一个法向量为,则由令,则,又因为面,取作为面的一个法向量,设二面角为,∴,∴,因此二面角的正弦值为18、(1)(2)(3)【解析】(1)由可求得的值,令,由可得,两式作差可推导出数列为等比数列,确定该数列的首项和公比,即可求得数列的通项公式;(2)求得,利用错位相减法可求得;(3)利用奇偶分组法,结合等差数列和等比数列的求和公式可求得.【小问1详解】解:当时,,可得,当时,由可得,上述两个等式作差得,可得,所以,数列是以为首项,以为公比的等比数列,故.【小问2详解】解:,所以,,所以,,上述两个等式作差得,因此,.【小问3详解】解:由题意可得,,所以,.19、(1).(或标准形式)(2)或【解析】(1)根据题意,求出中垂线方程,与直线联立,可得圆心的坐标,求出圆的半径,即可得答案;(2)分切线的斜率存在与不存在两种情况讨论,求出切线的方程,综合可得答案【小问1详解】解:根据题意,因为圆过两点,,设的中点为,则,因为,所以的中垂线方程为,即又因为圆心在直线上,联立,解得,所以圆心,半径,故圆的方程为,【小问2详解】解:当过点P的切线的斜率不存在时,此时直线与圆C相切当过点P的切线斜率k存在时,设切线方程为即(*)由圆心C到切线的距离,可得将代入(*),得切线方程为综上,所求切线方程为或20、(1)(2)①,②【解析】(1)由题意得解方程组求出,从而可得椭圆的方程,(2)①由题意可得的方程为,再与椭圆方程联立,解方程组求出的坐标,从而可求出;②当时,,当时,直线方程为,与椭圆方程联立,消去,利用根与系数的关系,结合中点坐标公式可得中点的坐标,再将直线的方程与方程联立,求出点的坐标,从而可求出的值【小问1详解】由题意得解得,所以椭圆的方程为.【小问2详解】①当时,直线的斜率,则的垂线的方程为由得解得故,,②由,,显然斜率存在,,当时,当时,直线过点且与直线垂直,则直线方程为由得显然设,,则,则中点直线的方程为,由得所以综上的值为21、(1)关(2)(3)【解析】(1)由题意,可判断时,,当,所以可判断出最多只能过关;(2)记一次抛掷所出现的点数之和大于为事件,两次抛掷所出现的点数之和大于为事件,得基本事件的总数以及满足题意的基本事件的个数,计算出,,从而根据概率相乘求解得连过前两关的概率;(3)设前两次和为,第三次点数为,列出第三关过关的基本事件的个数,利用概率相乘即可得连过前三关的概率.【小问1详解】因为骰子出现的点数最大为,当时,,而,所以时,这次抛掷所出现的点数之和均小于,所以最多只能过关.【小问2详解】记一次抛掷所出现的点数之和大于为事件,基本事件总数为个,符合题意的点数为,共个,所以;记两次抛掷所出现的点数之和大于为事件,基本事件总数为个,不符
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 线上听课的心得体会范文(5篇)
- 2025至2031年中国减重步态训练器行业投资前景及策略咨询研究报告
- 课题申报书:依据常住人口规模动态配置义务教育财政资源的优化路径研究
- 高性能复合材料研究-第1篇-全面剖析
- 课题申报书:学习科学视角下教师教学创新研究
- 制冷设备用压缩机企业ESG实践与创新战略研究报告
- 课题申报书:新质生产力背景下新型职普融通人才培养模式的创新构建与实践
- 课题申报书:新时代师德师风建设研究
- 2024年宿州砀山县招聘幼儿园教师笔试真题
- 2024年栖霞市考选毕业生笔试真题
- 文学经典与大众文化的联系与启迪
- (完整版)混凝土桩钻芯法检测题库
- 税务行政执法证据浅析
- 三轴搅拌桩安全操作规程
- 上海市中学艺术课程标准(征求意见稿)说明
- QCC改善案例(超经典)
- LED制程与工艺介绍
- 复合铜箔项目可行性研究报告(范文模板)
- 高等学校体育工作基本标准
- 北京中考语文词语表
- 病理学心血管系统疾病课件
评论
0/150
提交评论