




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届重庆市酉阳县高二数学第一学期期末复习检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知为两条不同的直线,为两个不同的平面,则下列结论正确的是()A.若,则B.若,则C.若,则D.若,则2.设是椭圆的上顶点,若上的任意一点都满足,则的离心率的取值范围是()A. B.C. D.3.已知直线,两个不同的平面,下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则4.已知数列中,前项和为,且点在直线上,则=A. B.C. D.5.已知椭圆的左、右焦点分别为,为轴上一点,为正三角形,若,的中点恰好在椭圆上,则椭圆的离心率是()A. B.C. D.6.在中,,,,则此三角形()A.无解 B.一解C.两解 D.解的个数不确定7.若复数z满足(其中为虚数单位),则()A. B.C. D.8.①直线在轴上的截距为;②直线的倾斜角为;③直线必过定点;④两条平行直线与间的距离为.以上四个命题中正确的命题个数为()A. B.C. D.9.已知矩形,为平面外一点,且平面,,分别为,上的点,且,,,则()A. B.C.1 D.10.若函数的导函数在区间上是减函数,则函数在区间上的图象可能是()A. B.C. D.11.已知两个向量,,且,则的值为()A.-2 B.2C.10 D.-1012.一个几何体的三视图都是半径为1的圆,在该几何体内放置一个高度为1的长方体,则长方体的体积最大值为()A. B.C. D.1二、填空题:本题共4小题,每小题5分,共20分。13.曲线的一条切线的斜率为,该切线的方程为________.14.已知函数,则曲线在处的切线方程为___________.15.点到直线的距离为_______.16.若=,则x的值为_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,动点到点的距离等于点到直线的距离.(1)求动点的轨迹方程;(2)记动点的轨迹为曲线,过点的直线与曲线交于两点,在轴上是否存在一点,使若存在,求出点的坐标;若不存在,请说明理由.18.(12分)已知数列满足,数列为等差数列,,前4项和.(1)求数列,的通项公式;(2)求和:.19.(12分)如图,在平面直角坐标系中,点,,(1)求直线BC的方程;(2)记的外接圆为圆M,若直线OC被圆M截得的弦长为4,求点C的坐标20.(12分)已知圆,直线的斜率为2,且过点(1)判断与的位置关系;(2)若圆,求圆与圆的公共弦长21.(12分)设命题p:,命题q:关于x的方程无实根.(1)若p为真命题,求实数m的取值范围;(2)若为假命题,为真命题,求实数m的取值范围22.(10分)如图,在棱长为3的正方体中,分别是上的点且(1)求证:;(2)求平面与平面的夹角的余弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据空间里面直线与平面、平面与平面位置关系的相关定理逐项判断即可.【详解】A,若,则或异面,故该选项错误;B,若,则或相交,故该选项错误;C,若,则α,β不一定垂直,故该选项错误;D,若,则利用面面垂直的性质可得,故该选项正确.故选:D.2、C【解析】设,由,根据两点间的距离公式表示出,分类讨论求出的最大值,再构建齐次不等式,解出即可【详解】设,由,因为,,所以,因为,当,即时,,即,符合题意,由可得,即;当,即时,,即,化简得,,显然该不等式不成立故选:C【点睛】本题解题关键是如何求出的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值3、A【解析】根据线面、面面位置关系有关知识对选项逐一分析,由此确定正确选项.【详解】对于A选项,根据面面垂直的判定定理可知,A选项正确,对于B选项,当,时,和可能相交,B选项错误,对于C选项,当,时,可能含于,C选项错误,对于D选项,当,时,可能含于,D选项错误.故选:A4、C【解析】点在一次函数上的图象上,,数列为等差数列,其中首项为,公差为,,数列的前项和,,故选C考点:1、等差数列;2、数列求和5、A【解析】根据题意得,取线段的中点,则根据题意得,,根据椭圆的定义可知,然后解出离心率的值.【详解】因为为正三角形,所以,取线段的中点,连结,则,所以,得,所以椭圆的离心率.故选:A.【点睛】求解离心率及其范围的问题时,解题的关键在于画出图形,根据题目中的几何条件列出关于,,的齐次式,然后得到关于离心率的方程或不等式求解6、C【解析】利用正弦定理求出的值,再根据所求值及a与b的大小关系即可判断作答.【详解】在中,,,,由正弦定理得,而为锐角,且,则或,所以有两解故选:C7、B【解析】利用复数的除法化简复数,利用复数的模长公式可求得结果.【详解】,因此,.故选:B8、B【解析】由直线方程的性质依次判断各命题即可得出结果.【详解】对于①,直线,令,则,直线在轴上的截距为-,则①错误;对于②,直线的斜率为,倾斜角为,则②正确;对于③直线,由点斜式方程可知直线必过定点,则③正确;对于④,两条平行直线与间的距离为,则④错误.故选:B.9、B【解析】由,,得,然后利用向量的加减法法则把向量用向量表示出来,可求出的值,从而可得答案【详解】解:因为,,所以所以,因为,所以,所以,故选:B10、A【解析】根据导数概念和几何意义判断【详解】由题意得,图象上某点处的切线斜率随增大而减小,满足要求的只有A故选:A11、C【解析】根据向量共线可得满足的关系,从而可求它们的值,据此可得正确的选项.【详解】因为,故存在常数,使得,所以,故,所以,故选:C.12、B【解析】根据题意得到几何体为半径为1的球,长方体的体对角线为球的直径时,长方体体积最大,设出长方体的长和宽,得到等量关系,利用基本不等式求解体积最大值.【详解】由题意得:此几何体为半径为1的球,长方体为球的内接长方体时,体积最大,此时长方体的体对角线为球的直径,设长方体长为,宽为,则由题意得:,解得:,而长方体体积为,当且仅当时等号成立,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】使用导数运算公式求得切点处的导数值,并根据导数的几何意义等于切线斜率求得切点的横坐标,进而得到切点坐标,然后利用点斜式求出切线方程即可.【详解】的导数为,设切点为,可得,解得,即有切点,则切线的方程为,即.故答案为:.【点睛】本题考查导数的加法运算,导数的几何意义,和求切线方程,难度不大,关键是正确的使用导数运算公式求得切点处的导数值,14、【解析】求出函数的导函数,即可求出切线的斜率,再利用点斜式求出切线方程【详解】解:∵,∴,又,∴曲线在点处的切线方程为,即.故答案为:.15、【解析】应用点线距离公式求点线距离.【详解】由题设,点到距离为.故答案为:16、4或9.【解析】分析:先根据组合数性质得,解方程得结果详解:因为=,所以因此点睛:组合数性质:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)存在,.【解析】(1)利用抛物线的定义即求;(2)由题可设直线的方程为,利用韦达定理法结合条件可得,即得.【小问1详解】因为动点到点的距离等于点到直线的距离,所以动点到点的距离和它到直线的距离相等,所以点的轨迹是以为焦点,以直线为准线的抛物线,设抛物线方程为,由,得,所以动点的轨迹方程为.【小问2详解】由题意可知,直线的斜率不为0,故设直线的方程为,.联立,得,恒成立,由韦达定理,得,,假设存在一点,满足题意,则直线的斜率与直线的斜率满足,即,所以,所以解得,所以存在一点,满足,点的坐标为.18、(1),;(2).【解析】(1)根据等比数列的定义,结合等差数列的基本量,即可容易求得数列,的通项公式;(2)根据(1)中所求,构造数列,证明其为等比数列,利用等比数列的前项和即可求得结果.【小问1详解】因为数列满足,故可得数列为等比数列,且公比,则;数列为等差数列,,前4项和,设其公差为,故可得,解得,则;综上所述,,.【小问2详解】由(1)可知:,,故,又,又,则是首项1,公比为的等比数列;则.19、(1);(2).【解析】(1)延长CB交x轴于点N,根据给定条件求出即可计算作答.(2)利用待定系数法求出圆M的方程,再由给定弦长确定C点位置,推理计算得解.【小问1详解】延长CB交x轴于点N,如图,因,则,又,则有,又,于是得,则直线BC的倾斜角为120°,直线BC的斜率,因此,,即所以直线BC的方程为.【小问2详解】依题意,设圆M的方程为,由(1)得:,解得,于是得圆M的方程为,即,圆心,半径,因直线OC被圆M所截的弦长为4,则直线OC过圆心,其方程为,由解得,即,所以点C的坐标是.20、(1)与相切;(2)【解析】(1)求出圆C的圆心坐标,半径和直线l的方程,根据圆心到直线的距离即可判断直线与圆的位置关系;(2)圆与圆的方程相减,可求出公共弦所在的直线方程,然后根据圆M的圆心到公共弦所在直线的距离及圆M的半径即可求出公共弦长.【小问1详解】由圆,可得,所以圆心为,半径,直线的方程为,即因为圆心到的距离为,所以与相切【小问2详解】联立方程可得,作差可得,即,即公共弦所在直线的方程为易知圆的半径,圆心到直线的距离为,则公共弦长21、(1)(2)【解析】(1)解一元二次不等式,即可求得当为真命题时的取值范围;(2)先求得命题为真命题时的取值范围.由为假命题,为真命题可知,两命题一真一假.分类讨论,即可求得的取值范围.【详解】(1)当为真命题时,解不等式可得;(2)当为真命题时,由,可得,∵为假命题,为真命题,∴,两命题一真一假,∴或,解得或,∴m的取值范围是.【点睛】本题考查了根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国APET包装盒行业现状规模及投资发展动向研究报告
- 邢台学院《国际文化贸易(双语)》2023-2024学年第二学期期末试卷
- 2025-2030年中国DSD酸市场投资规划及运营前景研究报告
- 甘肃省兰州市名校2024年中考二模数学试题含解析
- 广东省番禺区六校教育教联合体2023-2024学年中考数学最后一模试卷含解析
- 2025安全管理人员安全培训考试试题带答案(培优)
- 2025年企业员工岗前安全培训考试试题答案完整版
- 2025年日常安全培训考试试题【考试直接用】
- 2024-2025生产经营负责人安全培训考试试题答案突破训练
- 2025新入职工入职安全培训考试试题答案新
- 2025年建筑工程装饰合同范本
- 2025-2030中国可再生能源行业发展分析及投资前景与战略规划研究报告
- 院校建设可行性研究报告
- 《电力设备典型消防规程》知识培训
- 四川省成都东部新区龙云学校2024-2025学年五年级下册半期测试题(含答案)
- 儿童支气管哮喘诊断与防治指南(2025版)解读课件
- 仓管员安全培训课件
- 红蓝黄光治疗皮肤病临床应用专家共识解读
- 区域健康医疗大数据中心建设方案
- 易制毒基础知识试题及答案
- 人教版(PEP)五年级下册英语期中测试卷 (含答案无听力试题)
评论
0/150
提交评论