河北省保定市定州市2023年高二上数学期末教学质量检测模拟试题含解析_第1页
河北省保定市定州市2023年高二上数学期末教学质量检测模拟试题含解析_第2页
河北省保定市定州市2023年高二上数学期末教学质量检测模拟试题含解析_第3页
河北省保定市定州市2023年高二上数学期末教学质量检测模拟试题含解析_第4页
河北省保定市定州市2023年高二上数学期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省保定市定州市2023年高二上数学期末教学质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若某群体中成员只用现金支付的概率为,既用现金支付也用非现金支付的概率为,则不用现金支付的概率为()A. B.C. D.2.若点P是曲线上任意一点,则点P到直线的最小距离为()A.0 B.C. D.3.已知,,,,则()A. B.C. D.4.若两条平行线与之间的距离是2,则m的值为()A.或11 B.或10C.或12 D.或115.命题“∀x∈R,|x|+x2≥0”的否定是()A.∀x∈R,|x|+x2<0 B.∀x∈R,|x|+x2≤0C.∃x0∈R,|x0|+<0 D.∃x0∈R,|x0|+≥06.设α,β是两个不同的平面,m,n是两条不重合的直线,下列命题中为真命题的是()A如果,,n∥β,那么B.如果,,,那么α∥βC.如果m∥n,,,那么α∥βD.如果m∥n,,,那么7.定义在R上的函数与函数在上具有相同的单调性,则k的取值范围是()A. B.C. D.8.在等比数列中,,公比,则()A. B.6C. D.29.古希腊数学家阿基米德利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C的中心为原点,焦点,均在y轴上,椭圆C的面积为,且短轴长为,则椭圆C的标准方程为()A. B.C. D.10.世界上最早在理论上计算出“十二平均律”的是我国明代杰出的律学家朱载堉,他当时称这种律制为“新法密率”十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都相等,且最后一个单音是第一个单音频率的2倍.已知第十个单音的频率,则与第四个单音的频率最接近的是()A.880 B.622C.311 D.22011.我国古代数学典籍《四元玉鉴》中有如下一段话:“河有汛,预差夫一千八百八十人筑堤,只云初日差六十五人,次日转多七人,今有三日连差三百人,问已差人几天,差人几何?”其大意为“官府陆续派遣1880人前往修筑堤坝,第一天派出65人,从第二天开始每天派出的人数比前一天多7人.已知最后三天一共派出了300人,则目前一共派出了多少天,派出了多少人?”()A.6天495人 B.7天602人C.8天716人 D.9天795人12.如图,过抛物线的焦点的直线交抛物线于点,,交其准线于点,准线与对称轴交于点,若,且,则此抛物线的方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.不透明袋中装有完全相同,标号分别为1,2,3,…,8的八张卡片.从中随机取出3张.设X为这3张卡片的标号相邻的组数(例如:若取出卡片的标号为3,4,5,则有两组相邻的标号3、4和4、5,此时X的值是2).则随机变量X的数学期望______14.若曲线在处的切线平行于x轴,则___________.15.已知抛物线的焦点与的右焦点重合,则__________.16.等比数列的各项均为正数,且,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,点在椭圆上.(1)求椭圆的方程;(2)过点作轴的平行线交轴于点,过点的直线与椭圆交于两个不同的点、,直线、与轴分别交于、两点,若,求直线的方程;(3)在第(2)问条件下,点是椭圆上的一个动点,请问:当点与点关于轴对称时的面积是否达到最大?并说明理由.18.(12分)(1)求过点,且与直线垂直的直线方程;(2)甲,乙,丙等7名同学站成一排,若甲和乙相邻,但甲乙二人都不和丙相邻,则共有多少种不同排法?19.(12分)已知是公差不为零的等差数列,,且,,成等比数列(1)求数列的通项公式;(2)设,求数列的前项和20.(12分)如图,已知菱形ABCD的边长为3,对角线,将△沿着对角线BD翻折至△的位置,使得,在平面ABCD上方存在一点M,且平面ABCD,(1)求证:平面平面ABD;(2)求点M到平面ABE的距离;(3)求二面角的正弦值21.(12分)已知各项为正数的等比数列中,,.(1)求数列通项公式;(2)设,求数列的前n项和.22.(10分)已知定点,圆:,点Q为圆上动点,线段MQ的垂直平分线交NQ于点P,记P的轨迹为曲线C(1)求曲线C的方程;(2)过点M与N作平行直线和,分别交曲线C于点A,B和点D,E,求四边形ABDE面积的最大值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用对立事件的概率公式可求得所求事件的概率.【详解】由对立事件概率公式可知,该群体中的成员不用现金支付的概率为.故选:A.2、D【解析】由导数的几何意义求得曲线上与直线平行的切线方程的切线坐标,求出切点到直线的距离即为所求最小距离【详解】点是曲线上的任意一点,设,令,解得1或(舍去),,∴曲线上与直线平行的切线的切点为,点到直线的最小距离.故选:D.3、D【解析】根据对数函数的性质和幂函数的单调性可得正确的选项.【详解】因为,故,故,又,在上的增函数,故,故,故选:D.4、A【解析】利用平行线间距离公式进行求解即可.【详解】因为两条平行线与之间的距离是2,所以,或,故选:A5、C【解析】利用全称命题的否定可得出结论.【详解】由全称命题的否定可知,命题“,”的否定是“,”.故选:C.6、C【解析】AB.利用两平面的位置关系判断;CD.利用面面平行的判定定理判断;【详解】A.如果,,n∥β,那么α,β相交或平行;故错误;B.如果,,,那么α,β垂直,故错误;C.如果m∥n,,则,又,那么α∥β,故C正确;D错误,故选:C7、B【解析】判定函数单调性,再利用导数结合函数在的单调性列式计算作答.【详解】由函数得:,当且仅当时取“=”,则在R上单调递减,于是得函数在上单调递减,即,,即,而在上单调递减,当时,,则,所以k的取值范围是.故选:B8、D【解析】利用等比数列的通项公式求解【详解】由等比数列的通项公式得:.故选:D9、C【解析】设出椭圆的标准方程,根据已知条件,求得,即可求得结果.【详解】因为椭圆的焦点在轴上,故可设其方程为,根据题意可得,,故可得,故所求椭圆方程为:.故选:C.10、C【解析】依题意,每一个单音的频率构成一个等比数列,由,算出公比,结合,即可求出.【详解】设第一个单音的频率为,则最后一个单音的频率为,由题意知,且每一个单音的频率构成一个等比数列,设公比为,则,解得:又,则与第四个单音的频率最接近的是311,故选:C【点睛】关键点点睛:本题考查等比数列通项公式的运算,解题的关键是分析题意将其转化为等比数列的知识,考查学生的计算能力,属于基础题.11、B【解析】根据题意,设每天派出的人数组成数列,可得数列是首项,公差数7的等差数列,解方程可得所求值【详解】解:设第天派出的人数为,则是以65为首项、7为公差的等差数列,且,,∴,,∴天则目前派出的人数为人,故选:B12、B【解析】根据抛物线定义,结合三角形相似以及已知条件,求得,则问题得解.【详解】根据题意,过作垂直于准线,垂足为,过作垂直于准线,垂足为,如下所示:因为,又//,,则,故可得,又△△,则,即,解得,故抛物线方程为:.故选:.二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】设为这3张卡片的标号相邻的组数,则的可能取值为0,1,2,利用列举法分别求出相应的概率,由此能求出随机变量的数学期望【详解】解:不透明袋中装有完全相同,标号分别为1,2,3,,8的八张卡片从中随机取出3张,共有种,设为这3张卡片的标号相邻的组数,则的可能取值为0,1,2,的情况有:,2,,,3,,,4,,,5,,,6,,,7,,共6个,,的情况有:取,另外一个数有5种取法;取,另外一个数有4种取法;取,另外一个数有4种取法;取,另外一个数有4种取法;取,另外一个数有4种取法;取,另外一个数有4种取法;取,另外一个数有5种取法的情况一共有:,,,随机变量的数学期望:故答案为:14、【解析】求出导函数得到函数在时的导数,由导数值为0求得a的值【详解】由,得,则,∵曲线在点处的切线平行于x轴,∴,即.故答案为:15、【解析】求出抛物线的焦点坐标即为的右焦点可得答案.【详解】由题意可知:抛物线的焦点坐标为,由题意知表示焦点在轴的椭圆,在椭圆中:,所以,因为,所以.故答案为:.16、10【解析】由等比数列的性质可得,再利用对数的性质可得结果【详解】解:因为等比数列的各项均为正数,且,所以,所以故答案为:10三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)当点与点关于轴对称时,的面积达到最大,理由见解析.【解析】(1)设,可得出,,将点的坐标代入椭圆的方程,求出的值,即可得出椭圆的方程;(2)分析可知直线的斜率存在,设直线的方程为,设点、,将直线的方程与椭圆的方程联立,列出韦达定理,由已知可得,结合韦达定理可求得的值,即可得出直线的方程;(3)设与直线平行且与椭圆相切的直线的方程为,将该直线方程与椭圆的方程联立,由判别式为零可求得,分析可知当点为直线与椭圆的切点时,的面积达到最大,求出直线与椭圆的切点坐标,可得出结论.【小问1详解】解:因为,设,则,,所以,椭圆的方程可表示为,将点的坐标代入椭圆的方程可得,解得,因此,椭圆的方程为.【小问2详解】解:设线段的中点为,因为,则轴,故直线、的倾斜角互补,易知点,若直线轴,则、为椭圆短轴的两个顶点,不妨设点、,则,,,不合乎题意.所以,直线的斜率存在,设直线的方程为,设点、,联立,可得,,由韦达定理可得,,,,则,所以,解得,因此,直线的方程为.【小问3详解】解:设与直线平行且与椭圆相切的直线的方程为,联立,可得(*),,解得,由题意可知,当点为直线与椭圆的切点时,此时的面积取最大值,当时,方程(*)为,解得,此时,即点.此时,点与点关于轴对称,因此,当点与点关于轴对称时,的面积达到最大.【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值18、(1);(2)960【解析】(1)根据题意,设要求直线为,将点的坐标代入,求出的值,即可得答案;(2)根据题意,分2步进行分析:先将除甲乙丙之外的4人全排列,再将甲乙看成一个整体,与丙一起安排在4人的空位中,由分步计数原理计算可得答案【详解】解:(1)根据题意,设所求直线为,又由所求直线经过点,即,则,即所求直线;(2)根据题意,分2步进行分析:先将除甲乙丙之外的4人全排列,有种排法,再将甲乙看成一个整体,与丙一起安排在4人的空位中,有种排法,则有种排法19、(1);(2)【解析】(1)由等差数列以及等比中项的公式代入联立求解出,再利用等差数列的通项公式即可求得答案;(2)利用分组求和法,根据求和公式分别求出等差数列与等比数列的前项和再相加即可.【详解】(1)由题意,,,即,联立解得,所以数列的通项公式为;(2)由(1)得,,所以【点睛】关于数列前项和的求和方法:分组求和法:两个数列等差或者等比数列相加时利用分组求和法计算;裂项相加法:数列的通项公式为分式时可考虑裂项相消法求和;错位相减法:等差乘以等比数列的情况利用错位相减法求和.20、(1)证明见解析;(2)1;(3).【解析】(1)过E作EO垂直于BD于O,连接AO,由勾股定义易得,由菱形的性质有,再根据线面垂直、面面垂直的判定即可证结论.(2)构建空间直角坐标系,确定相关点的坐标,进而求的坐标及面ABE的法向量,应用空间向量的坐标运算求点面距.(3)由(2)求得面MBA的法向量,结合(2)中面ABE的法向量,应用空间向量夹角的坐标表示求二面角的余弦值,进而求其正弦值.【小问1详解】过E作EO垂直于BD于O,连接AO,因为,,故,同理,又,所以,即因为ABCD为菱形,所以,又,所以面ABD,又面EBD,所以面面ABD【小问2详解】以O为坐标原点,以,,分别为x轴,y轴,z轴的正方向,如图建立空间直角坐标系,则,,,,,所以,,面ABE的法向量为,所以,令,则又,则点M到面ABE的距离为【小问3详解】由(2)得:面ABE的一个法向量为,且,若面MBA的法向量为,则,令,则所以,故二面角正弦值为21、(1);(2)【解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论