广东信宜市2024届高二上数学期末调研模拟试题含解析_第1页
广东信宜市2024届高二上数学期末调研模拟试题含解析_第2页
广东信宜市2024届高二上数学期末调研模拟试题含解析_第3页
广东信宜市2024届高二上数学期末调研模拟试题含解析_第4页
广东信宜市2024届高二上数学期末调研模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东信宜市2024届高二上数学期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线(,)的左,右焦点分别为,.若双曲线右支上存在点,使得与双曲线的一条渐近线垂直并相交于点,且,则双曲线的渐近线方程为()A. B.C. D.2.关于的不等式的解集为,则关于的不等式的解集为A. B.C. D.3.彬塔,又称开元寺塔、彬县塔,民间称“雷峰塔”,位于陕西省彬县城内西南紫薇山下.某同学为测量彬塔的高度,选取了与塔底在同一水平面内的两个测量基点与,现测得,,,在点测得塔顶的仰角为60°,则塔高()A.30m B.C. D.4.“杨辉三角”是中国古代数学文化的瑰宝之一,最早在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现.如图所示的杨辉三角中,第8行,第3个数是()第0行1第1行11第2行121第3行1331第4行14641……A.21 B.28C.36 D.565.由伦敦著名建筑事务所SteynStudio设计的南非双曲线大教堂惊艳世界,该建筑是数学与建筑完美结合造就的艺术品,若将如图所示的大教堂外形弧线的一段近似看成双曲线下支的一部分,离心率为,则该双曲线的渐近线方程为()A. B.C. D.6.年底以来,我国多次在重要场合和政策文件中提及碳中和,碳中和指的是二氧化碳排放量和吸收量可以正负抵消,实现二氧化碳“零排放”.二氧化碳的分子是由一个碳原子和两个氧原子构成的,其结构式为.已知氧有、、三种天然同位素,碳有、、三种天然同位素,则由上述同位素可构成的不同二氧化碳分子共有()A.种 B.种C.种 D.种7.如图,已知正方体,点P是棱中点,设直线为a,直线为b.对于下列两个命题:①过点P有且只有一条直线l与a、b都相交;②过点P有且只有两条直线l与a、b都成角.以下判断正确的是()A.①为真命题,②为真命题 B.①为真命题,②为假命题C.①为假命题,②为真命题 D.①为假命题,②为假命题8.在四面体中,点G是的重心,设,,,则()A. B.C. D.9.若函数在上有且仅有一个极值点,则实数的取值范围为()A. B.C. D.10.定义在区间上的函数满足:对恒成立,其中为的导函数,则A.B.C.D.11.等比数列中,,,则()A. B.C. D.12.动点P,Q分别在抛物线和圆上,则的最小值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,满足约束条件,则的最大值为_____________14.已知定义在上的偶函数的导函数为,当时,有,且,则使得成立的的取值范围是___________.15.已知A,B为x,y正半轴上的动点,且,O为坐标原点,现以为边长在第一象限做正方形,则的最大值为___________.16.已知函数在点处的切线为直线l,则l与坐标轴围成的三角形面积为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设命题p:实数x满足x≤2,或x>6,命题q:实数x满足x2﹣3ax+2a2<0(其中a>0)(1)若a=2,且为真命题,求实数x的取值范围;(2)若q是的充分不必要条件,求实数a的取值范围.18.(12分)在平面直角坐标系中,已知,动点M满足(1)求M的轨迹方程;(2)设,点N是的中点,求点N的轨迹方程;(3)设M的轨迹与N的轨迹的交点为P、Q,求19.(12分)某公司有员工人,对他们进行年龄和学历情况调查,其结果如下:现从这名员工中随机抽取一人,设“抽取的人具有本科学历”,“抽取的人年龄在岁以下”,试求:(1);(2);(3).20.(12分)在等差数列中,,前10项和(1)求列的通项公式;(2)若数列是首项为1,公比为2的等比数列,求的前8项和21.(12分)已知椭圆:()的左、右焦点分别为,焦距为,过点作直线交椭圆于两点,的周长为.(1)求椭圆的方程;(2)若斜率为的直线与椭圆相交于两点,求定点与交点所构成的三角形面积的最大值.22.(10分)记为等差数列的前n项和,已知.(1)求的通项公式;(2)求的最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用渐近线方程和直线解出Q点坐标,再由得P点坐标,代入双曲线方程得到a、b、c的齐次式可解.【详解】如图,因为与渐近线垂直所以的斜率为,方程为解的Q的坐标为设P点坐标为则,因为,所以,得点P坐标为,代入得:所以,即所以渐近线方程为故选:B.2、B【解析】设,解集为所以二次函数图像开口向下,且与交点为,由韦达定理得所以的解集为,故选B.3、D【解析】在△中有,再应用正弦定理求,再在△中,即可求塔高.【详解】由题设知:,又,△中,可得,在△中,,则.故选:D4、B【解析】由题意知第8行的数就是二项式的展开式中各项的二项式系数,可得第8行,第3个数是为,即可求解【详解】解:由题意知第8行的数就是二项式的展开式中各项的二项式系数,故第8行,第3个数是为故选:B5、B【解析】求出的值,可得出双曲线的渐近线方程.【详解】由已知可得,因此,该双曲线的渐近线方程为.故选:B.6、C【解析】分两种情况讨论:两个氧原子相同、两个氧原子不同,分别计算出两种情况下二氧化碳分子的个数,利用分类加法计数原理可得结果.【详解】分以下两种情况讨论:若两个氧原子相同,此时二氧化碳分子共有种;若两个氧原子不同,此时二氧化碳分子共有种.由分类加法计数原理可知,由上述同位素可构成的不同二氧化碳分子共有种.故选:C.7、A【解析】①由正方形的性质,可以延伸正方形,再利用两条平行线确定一个平面即可;②一组邻边与对角面夹角相等,在平面内绕P转动,可以得到二条直线与a、b的夹角都等于.【详解】如下图所示,在侧面正方形和再延伸一个正方形和,则平面和在同一个平面内,所以过点P,有且只有一条直线l,即与a、b相交,故①为真命题;取中点N,连PN,由于a、b为异面直线,a、b的夹角等于与b的夹角.由于平面,平面,,所以平面,所以与与b的夹角都为.又因为平面,所以与与b的夹角都为,而,所以过点P,在平面内存在一条直线,使得与与b的夹角都为,同理可得,过点P,在平面内存在一条直线,使得与与的夹角都为;故②为真命题.故选:A8、B【解析】结合重心的知识以及空间向量运算求得正确答案.【详解】设是中点,.故选:B9、C【解析】根据极值点的意义,可知函数的导函数在上有且仅有一个零点.结合零点存在定理,即可求得的取值范围.【详解】函数则因为函数在上有且仅有一个极值点即在上有且仅有一个零点根据函数零点存在定理可知满足即可代入可得解得故选:C【点睛】本题考查了函数极值点的意义,函数零点存在定理的应用,属于中档题.10、D【解析】分别构造函数,,,,利用导数研究其单调性即可得出【详解】令,,,,恒成立,,,,函数在上单调递增,,令,,,,恒成立,,函数在上单调递减,,.综上可得:,故选:D【点睛】函数的性质是高考的重点内容,本题考查的是利用函数的单调性比较大小的问题,通过题目中给定的不等式,分别构造两个不同的函数求导判出单调性从而比较函数值得大小关系.在讨论函数的性质时,必须坚持定义域优先的原则.对于函数实际应用问题,注意挖掘隐含在实际中的条件,避免忽略实际意义对定义域的影响11、D【解析】设公比为,依题意得到方程,即可求出,再根据等比数列通项公式计算可得;【详解】解:设公比为,因为,,所以,即,解得,所以;故选:D12、B【解析】设,根据两点间距离公式,先求得P到圆心的最小距离,根据圆的几何性质,即可得答案.【详解】设,圆化简为,即圆心为(0,4),半径为,所以点P到圆心的距离,令,则,令,,为开口向上,对称轴为的抛物线,所以的最小值为,所以,所以的最小值为.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、6【解析】首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式,之后在图中画出直线,在上下移动的过程中,结合的几何意义,可以发现直线过B点时取得最大值,联立方程组,求得点B的坐标代入目标函数解析式,求得最大值.【详解】根据题中所给的约束条件,画出其对应的可行域,如图所示:由,可得,画出直线,将其上下移动,结合的几何意义,可知当直线在y轴截距最大时,z取得最大值,由,解得,此时,故答案为6.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.14、【解析】根据当时,有,令,得到在上递增,再根据在上的偶函数,得到在上是奇函数,则在上递增,然后由,得到求解【详解】∵当时,有,令,∴,∴在上递增,又∵在上的偶函数∴,∴在上是奇函数∴在上递增,又∵,∴当时,,此时,0<x<1,当时,,此时,,∴成立的的取值范围是故答案为:﹒15、32【解析】建立平面直角坐标系,设出角度和边长,表达出点坐标,进而表达出,利用三角函数换元,求出最大值.【详解】如图,过点D作DE⊥x轴于点E,过点C作CF⊥y轴于点F,设,(),则由三角形全等可知,设,,则,则,,则,令,,则,当时,取得最大值,最大值为32故答案为:3216、【解析】先求出切线方程,分别得到直线与x、y轴交点,即可求出三角形的面积.【详解】由函数可得:函数,所以,.所以切线l:,即.令,得到;令,得到;所以l与坐标轴围成的三角形面积为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1){x|2<x<4};(2).【解析】(1)分别求出命题和为真时对应的取值范围,即可求出;(2)由题可知,列出不等式组即可求解.【详解】解:(1)当a=2时,命题q:2<x<4,∵命题p:x≤2或x>6,,又为真命题,∴x满足,∴2<x<4,∴实数x的取值范围{x|2<x<4};(2)由题意得:命题q:a<x<2a;∵q是的充分不必要条件,,,解得,∴实数a的取值范围.【点睛】结论点睛:本题考查根据充分不必要条件求参数,一般可根据如下规则判断:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)若是的充分不必要条件,则对应集合是对应集合的真子集;(3)若是的充分必要条件,则对应集合与对应集合相等;(4)若是的既不充分又不必要条件,则对应的集合与对应集合互不包含18、(1)(2)(3)【解析】(1)设,根据向量数量积求解即可得答案;(2)设,,进而根据相关点法求解即可;(3)根据题意得弦由两圆相交得,进而根据几何法弦长即可得答案.【小问1详解】解:设,则,所以,即所以M的轨迹方程为.【小问2详解】解:设,,因为点N是的中点,所以,即,又因为在上,所以,即.所以点N的轨迹方程为.【小问3详解】解:因为M的轨迹与N的轨迹分别为,,是两个圆.所以两个方程作差得直线所在的方程,所以圆到:的距离为,所以19、(1);(2);(3).【解析】(1)利用古典概型的概率公式可求得;(2)利用古典概型的概率公式和对立事件的概率公式可求得;(3)利用古典概型的概率公式可求得所求事件的概率.【小问1详解】解:由表格中的数据可得.【小问2详解】解:由表格中的数据可得,所以.【小问3详解】解:可知即岁以下且专科学历,所以.20、(1);(2)347.【解析】(1)设等差数列的公差为,解方程组即得解;(2)先求出,再分组求和得解.【详解】解:(1)设等差数列的公差为,则解得所以(2)由题意,,所以所以的前8项和为21、(1)(2)【解析】(1)根据题意可得,,再由,即可求解.(2)设直线的方程为,将直线与椭圆方程联立求得关于的方程,利用弦长公式求出,再利用点到直线的距离求出点到直线的距离,利用三角形的面积公式配方即可求解.【详解】解(1)由题意得:,,∴,∴∴椭圆的方程为(2)∵直线的斜率为,∴可设直线的方程为与椭圆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论