河北邢台一中2024届高二数学第一学期期末达标检测试题含解析_第1页
河北邢台一中2024届高二数学第一学期期末达标检测试题含解析_第2页
河北邢台一中2024届高二数学第一学期期末达标检测试题含解析_第3页
河北邢台一中2024届高二数学第一学期期末达标检测试题含解析_第4页
河北邢台一中2024届高二数学第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北邢台一中2024届高二数学第一学期期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.双曲线的离心率的取值范围为,则实数的取值范围为()A. B.C. D.2.已知等差数列的公差,是与的等比中项,则()A. B.C. D.3.已知圆C的方程为,点P在圆C上,O是坐标原点,则的最小值为()A.3 B.C. D.4.直线平分圆的周长,过点作圆的一条切线,切点为,则()A.5 B.C.3 D.5.椭圆()的右顶点是抛物线的焦点,且短轴长为2,则该椭圆方程为()A. B.C. D.6.已知点A、是抛物线:上的两点,且线段过抛物线的焦点,若的中点到轴的距离为3,则()A.3 B.4C.6 D.87.如右图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是A. B.C. D.8.已知圆,直线,则直线l被圆C所截得的弦长的最小值为()A.2 B.3C.4 D.59.如图是抛物线形拱桥,当水面在n时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽为()A. B.C. D.10.已知函数只有一个零点,则实数的取值范围是()A B.C. D.11.若直线:与:互相平行,则a的值是()A. B.2C.或2 D.3或12.若直线过点(1,2),(4,2+),则此直线的倾斜角是()A.30° B.45°C.60° D.90°二、填空题:本题共4小题,每小题5分,共20分。13.设过点K(-1,0)的直线l与抛物线C:y2=4x交于A、B两点,为抛物线的焦点,若|BF|=2|AF|,则cos∠AFB=_______14.瑞士数学家欧拉(Euler)1765年在所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知的顶点,,,则欧拉线的方程为______15.不等式的解集是_______________16.已知数列的前n项和为,且满足通项公式,则________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设椭圆的左,右焦点分别为,其离心率为,且点在C上.(1)求C的方程;(2)O为坐标原点,P为C上任意一点.若M为的中点,过M且平行于的直线l交椭圆C于A,B两点,是否存在实数,使得?若存在,求值;若不存在,说明理由.18.(12分)2017年国家提出乡村振兴战略目标:2020年取得重要进展,制度框架和政策体系基本形成;2035年取得决定性进展,农业农村现代化基本实现;2050年乡村全面振兴,农业强、农村美、农民富全面实现.某地为实现乡村振兴,对某农产品加工企业调研得到该企业2012年到2020年盈利情况:年份201220132014201520162017201820192020年份代码x123456789盈利y(百万)6.06.16.26.06.46.96.87.17.0(1)根据表中数据判断年盈利y与年份代码x是否具有线性相关性;(2)若年盈利y与年份代码x具有线性相关性,求出线性回归方程并根据所求方程预测该企业2021年年盈利(结果保留两位小数)参考数据及公式:,,,,,统计中用相关系数r来衡量变量y,x之间的线性关系的强弱,当时,变量y,x线性相关19.(12分)如图,已知抛物线的焦点为F,抛物线C上的点到准线的最小距离为1(1)求抛物线C的方程;(2)过点F作互相垂直的两条直线l1,l2,l1与抛物线C交于A,B两点,l2与抛物线C交于C,D两点,M,N分别为弦AB,CD的中点,求|MF|·|NF|的最小值20.(12分)动点与定点的距离和它到定直线的距离的比是,记动点M的轨迹为曲线C.(1)求曲线C的方程;(2)已知过点的直线与曲线C相交于两点,,请问点P能否为线段的中点,并说明理由.21.(12分)如图,在四棱锥中,平面平面,底面是菱形,E为的中点(1)证明:(2)已知,求二面角的余弦值22.(10分)两个顶点、的坐标分别是、,边、所在直线的斜率之积等于,顶点的轨迹记为.(1)求顶点的轨迹的方程;(2)若过点作直线与轨迹相交于、两点,点恰为弦中点,求直线的方程;(3)已知点为轨迹的下顶点,若动点在轨迹上,求的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】分析可知,利用双曲线的离心率公式可得出关于的不等式,即可解得实数的取值范围.【详解】由题意有,,则,解得:故选:C.2、C【解析】由等比中项的性质及等差数列通项公式可得即可求.【详解】由,则,可得.故选:C.3、B【解析】化简判断圆心和半径,利用圆的性质判断连接线段OC,交圆于点P时最小,再计算求值即得结果.【详解】化简得圆C的标准方程为,故圆心是,半径,则连接线段OC,交圆于点P时最小,因为原点到圆心的距离,故此时.故选:B.4、B【解析】根据圆的性质,结合圆的切线的性质进行求解即可.【详解】由,所以该圆的圆心为,半径为,因为直线平分圆的周长,所以圆心在直线上,故,因此,,所以有,所以,故选:B5、A【解析】求得抛物线的焦点从而求得,再结合题意求得,即可写出椭圆方程.【详解】因为抛物线的焦点坐标为,故可得;又短轴长为2,故可得,即;故椭圆方程为:.故选:.6、D【解析】直接根据抛物线焦点弦长公式以及中点坐标公式求结果【详解】设,,则的中点到轴的距离为,则故选:D7、A【解析】如图:如图,取小圆上一点,连接并延长交大圆于点,连接,,则在小圆中,,在大圆中,,根据大圆的半径是小圆半径的倍,可知的中点是小圆转动一定角度后的圆心,且这个角度恰好是,综上可知小圆在大圆内壁上滚动,圆心转过角后的位置为点,小圆上的点,恰好滚动到大圆上的也就是此时的小圆与大圆的切点.而在小圆中,圆心角(是小圆与的交点)恰好等于,则,而点与点其实是同一个点在不同时刻的位置,则可知点与点是同一个点在不同时刻的位置.由于的任意性,可知点的轨迹是大圆水平的这条直径.类似的可知点的轨迹是大圆竖直的这条直径.故选A.8、C【解析】直线l过定点D(1,1),当时,弦长最短.【详解】由,圆心,半径,,由,故直线l过定点,∵,故D在圆C内部,直线l始终与圆相交,当时,直线l被圆截得的弦长最短,,弦长=.故选:C.9、D【解析】由题建立平面直角坐标系,设抛物线方程为,结合条件即求.【详解】建立如图所示的直角坐标系:设抛物线方程为,由题意知:在抛物线上,即,解得:,,当水位下降1米后,即将代入,即,解得:,∴水面宽为米.故选:D.10、B【解析】将题目转化为函数的图像与的图像只有一个交点,利用导数研究函数的单调性与极值,作出图像,利用数形结合求出的取值范围.【详解】由函数只有一个零点,等价于函数的图像与的图像只有一个交点,,求导,令,得当时,,函数在上单调递减;当时,,函数在上单调递增;当时,,函数在上单调递减;故当时,函数取得极小值;当时,函数取得极大值;作出函数图像,如图所示,由图可知,实数的取值范围是故选:B【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.11、A【解析】根据直线:与:互相平行,由求解.【详解】因为直线:与:互相平行,所以,即,解得或,当时,直线:,:,互相平行;当时,直线:,:,重合;所以,故选:A12、A【解析】求出直线的斜率,由斜率得倾斜角【详解】由题意直线斜率为,所以倾斜角为故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据已知设直线方程为与C联立,结合|BF|=2|AF|,利用韦达定理计算可得点A,B的坐标,进而求出向量的坐标,进而利用求向量夹角余弦值的方法,即可得到答案.【详解】令直线的方程为将直线方程代入批物线C:的方程,得令且,所以由抛物线的定义知,由|BF|=2|AF|可知,,则,解得:,,则A,B两点坐标分别为,则则.故答案为:14、【解析】根据给定信息,利用三角形重心坐标公式求出的重心,再结合对称性求出的外心,然后求出欧拉线的方程作答.【详解】因的顶点,,,则的重心,显然的外心在线段AC中垂线上,设,由得:,解得:,即点,直线,化简整理得:,所以欧拉线的方程为.故答案:15、或【解析】将分式不等式,转化为一元二次不等式求解【详解】因为,所以,解得或.故答案为:或【点睛】本题主要考查分式不等式的解法,还考查了运算求解的能力,属于基础题.16、【解析】由时,,可得,利用累乘法得,从而即可求解.【详解】因为,所以时,,即,化简得,又,所以,检验时也成立,所以,所以,故答案:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)列出关于a、b、c的方程组求解即可;(2)直线l斜率不存在时,易得λ的值;斜率存在时,设l方程为,联立直线l与椭圆C的方程,求出;求出OP方程,联立OP方程与椭圆C的方程,求出;代入即可求得λ.【小问1详解】由已知可得,解得,∴椭圆C的标准方程为.【小问2详解】若直线的斜率不存在时,,∴;当斜率存在时,设直线l的方程为.联立直线l与椭圆方程,消去y,得,∴.∵,设直线的方程为,联立直线与椭圆方程,消去y,得,解得.∴,∴,同理,∴,∵,∴,故,存在满足条件,综上可得,存在满足条件.【点睛】关键点点睛:本题的关键在于弦长公式的运用,AB斜率为k,,M(1,0),则,,,将弦长之积转化为韦达定理求解.18、(1)年盈利y与年份代码x具有线性相关性(2),7.25百万元【解析】(1)根据表中的数据和提供的公式计算即可;(2)先求线性回归方程,再代入计算即可【小问1详解】由表中的数据得,,,,因为,所以年盈利y与年份代码x具有线性相关性【小问2详解】,,,当时,,该企业2021年年盈利约为7.25百万元19、(1)(2)8【解析】(1)由抛物线C上的点到准线的最小距离为1,所以,即可求得抛物线的方程;(2)设直线AB的斜率为k,则直线CD的斜率为,得到直线AB的方程为,联立方程,求得,进而求得的坐标,得到的表达式,结合基本不等式,即可求解.【小问1详解】解:因为抛物线C上的点到准线的最小距离为1,所以,解得,所以抛物线C的方程为【小问2详解】解:由(1)可知焦点为F(1,0),由已知可得ABCD,所以直线AB,CD的斜率都存在且均不为0,设直线AB斜率为k,则直线CD的斜率为,所以直线AB的方程为,联立方程,消去x得,设点A(x1,y1),B(x2,y2),则,因为M(xM,yM)为弦AB的中点,所以,由,得,所以点,同理可得,所以,=,所以,当且仅当,即时,等号成立,所以的最小值为20、(1)(2)不能,理由见解析.【解析】(1)利用题中距离之比列出关于动点的方程即可求解;(2)先假设点P能为线段的中点,再利用点差法求出直线的斜率,最后联立直线与曲线进行检验即可.【小问1详解】解:动点与定点的距离和它到定直线的距离的比是则等式两边平方可得:化简得曲线C的方程为:【小问2详解】解:点不能为线段的中点,理由如下:由(1)知,曲线C的方程为:过点的直线斜率为,,因为过点的直线与曲线C相交于两点,所以,两式作差并化简得:①当为的中点时,则,②将②代入①可得:此时过点的直线方程为:将直线方程与曲线C方程联立得:,,无解与过点的直线与曲线C相交于两点矛盾所以点不能为线段的中点【点睛】方法点睛:当圆锥曲线中涉及中点和斜率的问题时,常用点差法进行求解.21、(1)详见解析(2)【解析】(1)利用垂直关系,转化为证明线面垂直,即可证明线线垂直;(2)利用垂直关系,建立空间直角坐标系,分别求平面和平面的法向量,利用公式,即可求解二面角的余弦值.【小问1详解】如图,取的中点,连结,,,因为,所以,因为平面平面,平面平面,所以平面,且平面,所以,又因为底面时菱形,所以,又因为点分别为的中点,所以,所以,且,所以平面,又因为平面,所以;【小问2详解】由(1)可知,平面,连结,因为,,点为的中点,所以,则两两垂直,以点为坐标原点,建立空间直角坐标系,如图所示:则,,,所以,,,,,,所以,,,设平面的法向量为,则,令,则,,故,设平面的法向量为,所以,因为二面角为锐二面角,所以二面角的余弦值为.22、(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论