广东省潮州市2023-2024学年高二数学第一学期期末学业质量监测试题含解析_第1页
广东省潮州市2023-2024学年高二数学第一学期期末学业质量监测试题含解析_第2页
广东省潮州市2023-2024学年高二数学第一学期期末学业质量监测试题含解析_第3页
广东省潮州市2023-2024学年高二数学第一学期期末学业质量监测试题含解析_第4页
广东省潮州市2023-2024学年高二数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省潮州市2023-2024学年高二数学第一学期期末学业质量监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,是空间中的任意两个非零向量,则下列各式中一定成立的是()A. B.C. D.2.椭圆的焦点坐标为()A. B.C. D.3.在各项均为正数等比数列中,若成等差数列,则=()A. B.C. D.4.函数在定义域上是增函数,则实数m的取值范围为()A. B.C. D.5.已知等差数列的前项和为,,,当取最大时的值为()A. B.C. D.6.正方体的棱长为,为侧面内动点,且满足,则△面积的最小值为()A. B.C. D.7.数学中的数形结合也可以组成世间万物的绚丽画面,-些优美的曲线是数学形象美、对称美、和谐美的产物.曲线C:为四叶玫瑰线.①方程(xy<0)表示的曲线在第二和第四象限;②曲线C上任一点到坐标原点0的距离都不超过2;③曲线C构成的四叶玫瑰线面积大于4π;④曲线C上有5个整点(横、纵坐标均为整数的点).则上述结论中正确的个数是()A.1 B.2C.3 D.48.已知双曲线的左、右焦点分别为,,过作圆的切线分别交双曲线的左、右两支于,,且,则双曲线的渐近线方程为()A. B.C. D.9.已知函数的图象如图所示,则其导函数的图象可能是()A. B.C. D.10.某种疾病的患病率为0.5%,通过验血诊断该病的误诊率为2%,即非患者中有2%的人验血结果为阳性,患者中有2%的人验血结果为阴性,随机抽取一人进行验血,则其验血结果为阳性的概率为()A.0.0689 B.0.049C.0.0248 D.0.0211.设椭圆()的左焦点为F,O为坐标原点.过点F且斜率为的直线与C的一个交点为Q(点Q在x轴上方),且,则C的离心率为()A. B.C. D.12.观察,,,由归纳推理可得:若定义在上的函数满足,记为的导函数,则=A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知直线过点,,且是直线的一个方向向量,则__________.14.如图,在四面体中,BA,BC,BD两两垂直,,,则二面角的大小为______15.《九章算术》是人类科学史上应用数学的最早巅峰,书中有这样一道题:“今有大夫、不更,簪裹、上造、公士,凡五人,共猎得五只鹿,欲以爵次分之,问各得几何?”其译文是“现在有从高到低依次为大夫,不更,簪裹,上造、公士的五个不同爵次的官员,共猎得五只鹿,要按爵次商低分(即根据爵次高低分配得到的猎物数依次成等差数列),向各得多少鹿?”已知上造分得只鹿,则不更所得的鹿数为_______只16.已知平面,过空间一定点P作一直线l,使得直线l与平面,所成的角都是30°,则这样的直线l有______条三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在空间四边形中,分别是的中点,分别在上,且(1)求证:四点共面;(2)设与交于点,求证:三点共线.18.(12分)已知函数.(1)求函数f(x)的最小正周期;(2)当时,求函数f(x)的值域.19.(12分)如图,已知椭圆:()的左、右焦点分别为、,离心率为.过的直线与椭圆的一个交点为,过垂直于的直线与椭圆的一个交点为,.(1)求椭圆的方程和点的轨迹的方程;(2)若曲线上的动点到直线:的最大距离为,求的值.20.(12分)已知圆,圆心在直线上(1)求圆的标准方程;(2)求直线被圆截得的弦的长21.(12分)已知圆心C的坐标为,且是圆C上一点(1)求圆C的标准方程;(2)过点的直线l被圆C所截得的弦长为,求直线l的方程22.(10分)求满足下列条件的双曲线的标准方程(1)焦点在x轴上,实轴长为4,实半轴长是虚半轴长的2倍;(2)焦点在y轴上,渐近线方程为,焦距长为

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用向量数量积的定义及运算性质逐一分析各选项即可得答案.【详解】解:对A:因为,所以,故选项A错误;对B:因为,故选项B错误;对C:因为,故选项C正确;对D:因为,故选项D错误故选:C.2、B【解析】根据方程可得,且焦点轴上,然后可得答案.【详解】由椭圆的方程可得,且焦点在轴上,所以,即,故焦点坐标为故选:B3、A【解析】利用等差中项的定义以及等比数列的通项公式即可求解.【详解】设等比数列的公比为,∵成等差数列,∴,即,解得或(舍去),∴,故选:.4、A【解析】根据导数与单调性的关系即可求出【详解】依题可知,在上恒成立,即在上恒成立,所以故选:A5、B【解析】由已知条件及等差数列通项公式、前n项和公式求基本量,再根据等差数列前n项和的函数性质判断取最大时的值.【详解】令公差为,则,解得,所以,当时,取最大值.故选:B6、B【解析】建立空间直角坐标系如图所示,设由,得出点的轨迹方程,由几何性质求得,再根据垂直关系求出△面积的最小值【详解】以点为原点,分别为轴建立空间直角坐标系,如图所示:则,,设所以,得,所以因为平面,所以故△面积的最小值为故选:B7、B【解析】对于①,由判断,对于②,利用基本不等式可判断,对于③,以为圆心,2为半径的圆的面积与曲线围成的面积进行比较即可,对于④,将和联立,求解出两曲线的切点,从而可判断【详解】对于①,由,得异号,方程(xy<0)关于原点及y=x对称,所以方程(xy<0)表示的曲线在第二和第四象限,所以①正确,对于②,因为,所以,所以,所以,所以由曲线的对称性可知曲线C上任一点到坐标原点0的距离都不超过2,所以②正确,对于③,由②可知曲线C上到原点的距离不超过2,而以为圆心,2为半径的圆的面积为,所以曲线C构成的四叶玫瑰线面积小于4π,所以③错误,对于④,将和联立,解得,所以可得圆与曲线C相切于点,,,,而点(1,1)不满足曲线方程,所以曲线在第一象限不经过任何整数点,由曲线的对称性可知曲线在其它象限也不经过任何整数点,所以曲线C上只有1个整点(0,0),所以④错误,故选:B8、D【解析】直线的斜率为,计算,,利用余弦定理得到,化简知,得到答案【详解】由题意知直线的斜率为,,又,由双曲线定义知,,.由余弦定理:,,即,即,解得.故双曲线渐近线的方程为.故答案选D【点睛】本题考查了双曲线的渐近线,与圆的关系,意在考查学生的综合应用能力和计算能力.9、A【解析】根据原函数图象判断出函数单调性,由此判断导函数的图象.【详解】原函数在上从左向右有增、减、增,个单调区间;在上递减.所以导函数在上从左向右应为:正、负、正;在上应为负.所以A选项符合.故选:A10、C【解析】根据全概率公式即可求出【详解】随机抽取一人进行验血,则其验血结果为阳性的概率为0.0248故选:C11、D【解析】连接Q和右焦点,可知|OQ|=,可得∠FQ=90°,由得,写出两直线方程,联立可得Q点坐标,Q点坐标代入椭圆标准方程可得a、b、c关系﹒【详解】设椭圆右焦点为,连接Q,∵,,∴|OQ|=,∴∠FQ=90°,∵,∴,FQ过F(-c,0),Q过(c,0),则,由,∵Q在椭圆上,∴,又,解得,∴离心率故选:D12、D【解析】由归纳推理可知偶函数的导数是奇函数,因为是偶函数,则是奇函数,所以,应选答案D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题得,解方程组即得解.【详解】解:由题得,因为是直线的一个方向向量,所以,所以,所以.故答案为:14、【解析】取的中点为,连接,由面面角的定义得出二面角的平面角为,再结合等腰直角三角形的性质得出二面角的大小.【详解】取的中点为,连接,因为,所以二面角的平面角为,因为,,所以为等腰直角三角形,即二面角的大小为.故答案为:15、【解析】由题意分析,利用等差数列基本量代换列方程组即可求解.【详解】记大夫,不更,簪裹,上造、公士得到的猎物数为等差数列,公差为d,由题意可得,即,解得,∴故答案为:16、4【解析】设平面,在平面内作于点O,在平面内过点O作,设OM是的角平分线,过棱m上一点P作,则过点O在平面OMQP上存在2条直线l,使得直线l与OB、OA成,直线l与平面且与平面,所成的角都是30°,在的补角一侧也存在2条满足条件的直线l,由此可得答案.【详解】解:设平面,在平面内作于点O,在平面内过点O作,因为平面,所以,设OM是的角平分线,则,过棱m上一点P作,则过点O在平面OMQP上存在2条直线l,使得直线l与OB、OA成,此时直线l与平面且与平面,所成的角都是30°,同理,在的补角一侧也存在2条满足条件的直线l,所以这样的直线l有4条,故答案为:4.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析.【解析】(1)根据题意,利用中位线定理和线段成比例,先证明,进而证明问题;(2)先证明平面,平面,进而证明点P在两个平面的交线上,然后证得结论.【小问1详解】连接分别是的中点,.在中,.所以四点共面.【小问2详解】,所以,又平面平面,同理:,平面平面,为平面与平面的一个公共点.又平面平面,即三点共线.18、(1);(2).【解析】(1)先通过降幂公式和辅助角公式将函数化简,进而求出周期;(2)求出的范围,进而结合三角函数的性质求得答案.【小问1详解】,函数最小正周期为.【小问2详解】当时,,,∴,即函数的值域为.19、(1)椭圆的方程为,点的轨迹的方程为(2)【解析】(1)由题意可得,求出,再结合,求出,从而可得椭圆的方程,设,则由题意可得,坐标代入化简可得点的轨迹的方程,(2)由题意结合点到直线的距离公式可得,设,将直线方程代入椭圆方程中消去,整理利用根与系数的关系,由,可得,因为,代入化简计算可求得答案【小问1详解】由题意得,解得,则,所以椭圆的方程,设,则由题意可得,所以,所以,所以点轨迹的方程为【小问2详解】由(1)知曲线是以原点为圆心,1为半径的圆,因为曲线上的动点到直线:的最大距离为,所以,得,设,由,得,所以,,因为,所以,所以,所以,因为,所以,所以,,所以,得,得(舍去),或20、(1);(2)【解析】(1)由圆的一般式方程求出圆心代入直线即可求出得值,即可求解;(2)先计算圆心到直线的距离,利用即可求弦长.【详解】(1)由圆,可得所以圆心为,半径又圆心在直线上,即,解得所以圆的一般方程为,故圆的标准方程为(2)由(1)知,圆心,半径圆心到直线的距离则直线被圆截得的弦的长为所以,直线被圆截得弦的长为【点睛】方法点睛:圆的弦长的求法(1)几何法,设圆的半径为,弦心距为,弦长为,则;(2)代数法,设直线与圆相交于,,联立直线与圆的方程,消去得到一个关于的一元二次方程,从而可求出,,根据弦长公式,即可得出结果.21、(1)(2)或【解析】(1)计算圆的半径,写出圆的标准方程即可;(2)先验证斜率不

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论