甘肃省白银市会宁县第四中学2023-2024学年数学高二上期末教学质量检测模拟试题含解析_第1页
甘肃省白银市会宁县第四中学2023-2024学年数学高二上期末教学质量检测模拟试题含解析_第2页
甘肃省白银市会宁县第四中学2023-2024学年数学高二上期末教学质量检测模拟试题含解析_第3页
甘肃省白银市会宁县第四中学2023-2024学年数学高二上期末教学质量检测模拟试题含解析_第4页
甘肃省白银市会宁县第四中学2023-2024学年数学高二上期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省白银市会宁县第四中学2023-2024学年数学高二上期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知且,则下列不等式恒成立的是A. B.C. D.2.若集合,,则A. B.C. D.3.若球的半径为,一个截面圆的面积是,则球心到截面圆心的距离是()A. B.C. D.4.若两直线与互相垂直,则k的值为()A.1 B.-1C.-1或1 D.25.已知函数,要使函数有三个零点,则的取值范围是()A. B.C. D.6.已知函数的导函数为,且满足,则()A. B.C. D.7.已知等比数列的前3项和为3,,则()A. B.4C. D.18.函数的定义域为,其导函数的图像如图所示,则函数极值点的个数为()A.2 B.3C.4 D.59.已知,为椭圆的左、右焦点,P为椭圆上一点,若,则P点的横坐标为()A. B.C.4 D.910.双曲线:的渐近线与圆:在第一、二象限分别交于点、,若点满足(其中为坐标原点),则双曲线的离心率为()A. B.C. D.11.对于函数,下列说法正确的是()A.的单调减区间为B.设,若对,使得成立,则C.当时,D.若方程有4个不等的实根,则12.中国古代有一道数学题:“今有七人差等均钱,甲、乙均七十七文,戊、己、庚均七十五文,问戊、己各若干?”意思是甲、乙、丙、丁、戊、己、庚七个人分钱,所分得的钱数构成等差数列,甲、乙两人共分得77文,戊、己、庚三人共分得75文,则戊、己两人各分得多少文钱?则下列说法正确的是()A.戊分得34文,己分得31文 B.戊分得31文,己分得34文C.戊分得28文,己分得25文 D.戊分得25文,己分得28文二、填空题:本题共4小题,每小题5分,共20分。13.某甲、乙两人练习跳绳,每人练习10组,每组不间断跳绳计数的茎叶图如图,则下面结论中所有正确的序号是___________.①甲比乙的极差大;②乙的中位数是18;③甲的平均数比乙的大;④乙的众数是21.14.已知为直线上的动点,为函数图象上的动点,则的最小值为______15.已知椭圆的右焦点为,短轴的一个端点为,直线交椭圆于两点.若,点到直线的距离不小于,则椭圆的离心率的取值范围是______________16.双曲线的离心率为__________________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,,其中为自然对数的底数.(1)若为的极值点,求的单调区间和最大值;(2)是否存在实数,使得的最大值是?若存在,求出的值;若不存在,说明理由.18.(12分)男子10米气步枪比赛规则如下:在资格赛中,射手在距离靶子10米处,采用立姿,在105分钟内射击60发子弹,总环数排名前8名的射手进入决赛;在决赛中,每位射手仅射击10发子弹.已知甲乙两名运动员均进入了决赛,资格赛中的环数情况整理得下表:环数频数678910甲2352327乙5502525以各人这60发子弹环数的频率作为决赛中各发子弹环数发生的概率,甲乙两人射击互不影响(1)求甲运动员在决赛中前2发子弹共打出1次10环的概率;(2)决赛打完第9发子弹后,甲比乙落后2环,求最终甲能战胜乙(甲环数大于乙环数)的概率19.(12分)某公司从2020年初起生产某种高科技产品,初始投入资金为1000万元,到年底资金增长50%.预计以后每年资金增长率与第一年相同,但每年年底公司要扣除消费资金x万元,余下资金再投入下一年的生产.设第n年年底扣除消费资金后的剩余资金为万元.(1)用x表示,,并写出与的关系式;.(2)若企业希望经过5年后,使企业剩余资金达3000万元,试确定每年年底扣除的消费资金x的值(精确到万元).20.(12分)在平面直角坐标系内,已知的三个顶点坐标分别为(1)求边垂直平分线所在的直线的方程;(2)若的面积为5,求点的坐标21.(12分)已知抛物线的准线方程为(1)求C的方程;(2)直线与C交于A,B两点,在C上是否存在点Q,使得直线QA,QB分别与y轴交于M,N两点,且?若存在,求出点Q的坐标;若不存在,说明理由22.(10分)已知抛物线的方程为,点,过点的直线交抛物线于两点(1)求△OAB面积的最小值(为坐标原点);(2)是否为定值?若是,求出该定值;若不是,说明理由

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】∵且,∴∴选C2、A【解析】通过解不等式得出集合B,可以做出集合A与集合B的关系示意图,可得出选项.【详解】因为,解不等式即,所以或,所以集合,作出集合A与集合B的示意图如下图所示:所以:,故选A【点睛】本题考查集合间的交集运算,属于基础题.3、C【解析】由题意可解出截面圆的半径,然后利用勾股定理求解球心与截面圆圆心的距离【详解】由截面圆的面积为可知,截面圆的半径为,则球心到截面圆心的距离为故选:C【点睛】解答本题的关键点在于,球心与截面圆圆心的连线垂直于截面4、B【解析】根据互相垂直的两直线的性质进行求解即可.【详解】由,因此直线的斜率为,直线的斜率为,因为两直线与互相垂直,所以,故选:B5、A【解析】要使函数有三个解,则与图象有三个交点,数形结合即可求解.【详解】要使函数有三个解,则与图象有三个交点,因为当时,,所以,可得在上递减,在递增,所以,有最小值,且时,,当趋向于负无穷时,趋向于0,但始终小于0,当时,单调递减,由图像可知:所以要使函数有三个零点,则.故选:A6、C【解析】求出导数后,把x=e代入,即可求解.【详解】因为,所以,解得故选:C7、D【解析】设等比数列公比为,由已知结合等比数列的通项公式可求得,,代入即可求得结果.【详解】设等比数列的公比为,由,得即,又,即又,,解得又等比数列的前3项和为3,故,即,解得故选:D8、C【解析】根据给定的导函数的图象,结合函数的极值的定义,即可求解.【详解】如图所示,设导函数的图象与轴的交点分别为,根据函数的极值的定义可知在该点处的左右两侧的导数符号相反,可得为函数的极大值点,为函数的极小值点,所以函数极值点的个数为4个.故选:C.9、B【解析】设,,根据向量的数量积得到,与椭圆方程联立,即可得到答案;【详解】设,,,与椭圆联立,解得:,故选:B10、B【解析】由,得点为三角形的重心,可得,即可求解.【详解】如图:设双曲线的焦距为,与轴交于点,由题可知,则,由,得点为三角形的重心,可得,即,,即,解得.故选:B【点睛】本题主要考查了双曲线的简单几何性质,三角形的重心的向量表示,属于中档题.11、B【解析】函数,,,,,利用导数研究函数的单调性以及极值,画出图象A.结合图象可判断出正误;B.设函数的值域为,函数,的值域为.若对,,使得成立,可得.分别求出,,即可判断出正误C.由函数在单调递减,可得函数在单调递增,由此即可判断出正误;D.方程有4个不等的实根,则,且时,有2个不等的实根,由图象即可判断出正误;【详解】函数,,,,可得函数在上单调递减,在上单调递减,在上单调递增,当时,,由此作出函数的大致图象,如图示:A.由上述分析结合图象,可得A不正确B.设函数的值域为,函数,的值域为,对,,.,,由,若对,,使得成立,则,所以,因此B正确C.由函数在单调递减,可得函数在单调递增,因此当时,,即,因此C不正确;D.方程有4个不等的实根,则,且时,有2个不等的实根,结合图象可知,因此D不正确故选:B12、C【解析】设甲、乙、丙、丁、戊、己、庚所分钱数分别为,,,,,,,再根据题意列方程组可解得结果.【详解】依题意,设甲、乙、丙、丁、戊、己、庚所分钱数分别为,,,,,,,则,解得,所以戊分得(文),己分得(文),故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、①③④【解析】根据茎叶图提供的数据求出相应的极差、中位数、均值、众数再判断【详解】由茎叶图,甲的极差是37-8=29,乙的极差是23-9=14,甲极差大,①正确;乙中位数是,②错;甲平均数是:,乙的平均数为:16.9,③正确;乙的众数是21,④正确故答案为:①③④14、【解析】求得的导数,由题意可得与直线平行的直线和曲线相切,然后求出的值最小,设出切点,求出切线方程,再由两直线平行的距离公式,得到的最小值【详解】解:函数的导数为,设与直线平行的直线与曲线相切,设切点为,则,所以,所以,所以,所以,所以切线方程为,可得的最小值为,故答案为:15、【解析】设左焦点为,连接,.则四边形是平行四边形,可得.设,由点M到直线l的距离不小于,即有,解得.再利用离心率计算公式即可得出范围【详解】设左焦点为,连接,.则四边形是平行四边形,故,所以,所以,设,则,故,从而,,,所以,即椭圆的离心率的取值范围是【点睛】本题考查了椭圆的定义标准方程及其性质、点到直线的距离公式、不等式的性质,考查了推理能力与计算能力,属于中档题16、【解析】根据双曲线方程确定a,b,c的值,求出离心率.【详解】由双曲线可得:,故,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调增区间是,单调减区间是;最大值为;(2)存在,.【解析】(1)利用为的极值点求得,进而可得函数的单调区间和最大值;(2)对导函数,分与进行讨论,得函数的单调性进而求得最值,再由最大值是求出的值.【详解】解:.(1)∵,,∴,由,得.∴,∴,,,,∴的单调增区间是,单调减区间是;的极大值为;也即的最大值为.(2)解:∵,∴,①当时,单调递增,得的最大值是,解得,舍去;②时,由,即,当,即时,∴时,;时,;∴的单调增区间是,单调减区间是,又在上的最大值为,∴,∴;当,即时,在单调递增,∴的最大值是,解得,舍去;综上:存在符合题意,此时.【点睛】本题主要考查了函数的导数在求解函数的单调性及求解函数的最值中的应用,还考查了函数的最值求解与分类讨论的应用,解题时要认真审题,注意挖掘题设中的条件.18、(1)(2)【解析】(1)先求出甲运动员打中10环的概率,从而可求出甲运动员在决赛中前2发子弹共打出1次10环的概率;(2)由于甲比乙落后2环,所以甲要获胜,则乙6环,甲9环或10环,或者乙7环,甲10环,再利用独立事件和互斥事件的概率公式求解即可【小问1详解】由表中的数据可得甲运动员打中10环的概率为,所以甲运动员在决赛中前2发子弹共打出1次10环的概率为【小问2详解】因为甲比乙落后2环,所以甲要获胜,则乙打中6环,甲打中9环或10环,或者乙打中7环,甲打中10环,因为由题意可得乙打中6环的概率和打中7环的概率均为,甲打中9环的概率为,打中10环的概率为,且甲乙两人射击互不影响所以最终甲能战胜乙的概率为19、(1);(2)x=348【解析】(1)根据题意直接得,,进而归纳出;(2)由(1)可得,利用等比数列的求和公式可得,结合即可计算出d的值.【小问1详解】由题意知,,,;【小问2详解】由(1)可得,,则,所以,即,当时,,解得,当时,万元.故该企业每年年底扣除消费资金为348万元时,5年后企业剩余资金为3000万元.20、(1);(2)或【解析】(1)由题意直线的斜率公式,两直线垂直的性质,求出的斜率,再用点斜式求直线的方程(2)根据的面积为5,求得点到直线的距离,再利用点到直线的距离公式,求得的值【详解】解:(1),,的中点的坐标为,又设边的垂直平分线所在的直线的斜率为则,可得的方程为,即边的垂直平分线所在的直线的方程(2)边所在的直线方程为设边上的高为即点到直线的距离为且解得解得或,点的坐标为或21、(1)(2)见解析【解析】(1)根据准线方程得出抛物线方程;(2)联立直线和抛物线方程,由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论