




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省东莞市三校2024届高二数学第一学期期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过点且斜率为的直线方程为()A. B.C D.2.已知椭圆的右焦点为,为坐标原点,为轴上一点,点是直线与椭圆的一个交点,且,则椭圆的离心率为()A. B.C. D.3.已知数列满足,则()A. B.C. D.4.已知函数有两个极值点m,n,且,则的最大值为()A. B.C. D.5.椭圆的焦点坐标是()A.(±4,0) B.(0,±4)C.(±5,0) D.(0,±5)6.直线与曲线相切于点,则()A. B.C. D.7.在中,角所对的边分别为,,,则外接圆的面积是()A. B.C. D.8.若函数单调递增,则实数a的取值范围为()A. B.C. D.9.已知两条平行直线:与:间的距离为3,则()A.25或-5 B.25C.5 D.21或-910.已知直线交圆于A,B两点,若点满足,则直线l被圆C截得线段的长是()A.3 B.2C. D.411.记为等差数列的前项和.若,,则的公差为()A.1 B.2C.4 D.812.“”是“方程为双曲线方程”的()A充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆的左、右焦点分别为,,上顶点为A,直线与椭圆C的另一个交点为B,则的面积为___________.14.已知点在圆上,点在圆上,则的最小值是__________15.传说古希腊毕达哥拉斯学派的数学家用沙粒和小石子来研究数.用一点(或一个小石子)代表1,两点(或两个小石子)代表2,三点(或三个小石子)代表3,…他们研究了各种平面数(包括三角形数、正方形数、长方形数、五边形数、六边形数等等)和立体数(包括立方数、棱锥数等等).如前四个四棱锥数为第n个四棱锥数为1+4+9+…+n2=.中国古代也有类似的研究,如图的形状出现在南宋数学家杨辉所著的《详解九章算法•商功》中,后人称为“三角垛”.“三角垛”的最上层有1个球,第二层有3个球,第三层有6个球,…若一个“三角垛”共有20层,则第6层有____个球,这个“三角垛”共有______个球16.已知定点,,P是椭圆上的动点,则的的最小值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,已知,,,,分别为边,的中点,于点.(1)求直线方程;(2)求直线的方程.18.(12分)已知三条直线:,:,:(是常数),.(1)若,,相交于一点,求的值;(2)若,,不能围成一个三角形,求的值:(3)若,,能围成一个直角三角形,求的值.19.(12分)已知抛物线,过点作直线(1)若直线的斜率存在,且与抛物线只有一个公共点,求直线的方程(2)若直线过抛物线的焦点,且交抛物线于两点,求弦长20.(12分)已知直线,圆.(1)求证:直线l恒过定点;(2)若直线l的倾斜角为,求直线l被圆C截得的弦长.21.(12分)已知函数(1)求曲线在点(e,)的切线方程;(2)求函数的单调区间.22.(10分)在△中,已知、、分别是三内角、、所对应的边长,且(Ⅰ)求角的大小;(Ⅱ)若,且△的面积为,求.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用点斜式可得出所求直线的方程.【详解】由题意可知所求直线的方程为,即.故选:B.2、D【解析】设椭圆的左焦点为,由椭圆的对称性可知,则,所以,即可得到的关系,利用椭圆的定义进而求得离心率.【详解】设椭圆的左焦点为,连接,因为,所以,如图所示,所以,设,,则,所以,故选:D.3、D【解析】根据给定条件求出数列的通项公式,再利用裂项相消法即可计算作答.【详解】因,则,所以,所以.故选:D4、C【解析】对求导得,得到m,n是两个根,由根与系数的关系可得m,n的关系,然后构造函数,利用导数求单调性,进而得最值.【详解】由得:m,n是两个根,由根与系数的关系得:,故,令记,则,故在上单调递减.故选:C5、A【解析】根据椭圆的方程求得的值,进而求得椭圆的焦点坐标,得到答案.【详解】由椭圆,可得,则,所以椭圆的焦点坐标为和.故选:A.6、A【解析】直线与曲线相切于点,可得求得的导数,可得,即可求得答案.【详解】直线与曲线相切于点将代入可得:解得:由,解得:.可得,根据在上,解得:故故选:A.【点睛】本题考查了根据切点求参数问题,解题关键是掌握函数切线的定义和导数的求法,考查了分析能力和计算能力,属于中档题.7、B【解析】利用余弦定理可得,然后利用正弦定理可得,即求.【详解】因为,所以,由余弦定理得,,所以,设外接圆的半径为,由正统定理得,,所以,所以外接圆的面积是.故选:B.8、D【解析】根据函数的单调性,可知其导数在R上恒成立,分离参数,即可求得答案.【详解】由题意可知单调递增,则在R上恒成立,可得恒成立,当时,取最小值-1,故,故选:D9、A【解析】根据平行直线的性质,结合平行线间距离公式进行求解即可.【详解】因为直线:与:平行,所以有,因为两条平行直线:与:间距离为3,所以,或,当时,;当时,,故选:A10、B【解析】由题设知为圆的圆心且A、B在圆上,根据已知及向量数量积的定义求的大小,进而判断△的形状,即可得直线l被圆C截得线段的长.【详解】∵点为圆的圆心且A、B在圆上,又,∴,∴,又,∴,故△为等边三角形,∴直线l被圆C截得线段的长是2故选:B11、C【解析】根据等差数列的通项公式及前项和公式利用条件,列出关于与的方程组,通过解方程组求数列的公差.【详解】设等差数列的公差为,则,,联立,解得.故选:C.12、C【解析】先求出方程表示双曲线时满足的条件,然后根据“小推大”原则进行判断即可.【详解】因为方程为双曲线方程,所以,所以“”是“方程为双曲线方程”的充要条件.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求出直线的方程,联立方程,求得B点的坐标,从而可得出答案.【详解】解:由题意知,,,直线的方程为,联立方程组,解得,或,即,所以.故答案为:.14、3-5【解析】因为点在圆上,点在圆上,故两圆的圆心分别为半径分别为和两圆的圆心距为,故两圆相离,则最小值为,故答案为.考点:1、圆的方程及圆的几何性质;2、两点间的距离公式及最值问题.【方法点晴】本题主要考查圆的方程及几何性质、两点间的距离公式及最值问题的应用,属于难题.解决解析几何的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将解析几何中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题就是利用圆的几何性质,将的最小值转化两圆心的距离减半径解答的.15、①.21②.1540【解析】根据题中给出的图形,结合题意找到各层球的数列与层数的关系,得到=,由此可求的值,以及前20层的总球数【详解】由题意可知,,故==,所==21,所以S20=a1+a2+a3+a4+⋯⋯+a20=(12+22+32+⋯⋯+202)+(1+2+3+⋯⋯+20)=×+×=1540故答案为:21;154016、##【解析】根据椭圆的定义可知,化简并结合基本不等式可求的的最小值.【详解】由题可知:点,是椭圆的焦点,所以,所以,即,当且仅当时等号成立,即时等号成立.所以的最小值为,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据给定条件求出点D,E坐标,再求出直线DE方程作答.(2)求出直线AH的斜率,再借助直线的点斜式方程求解作答.【小问1详解】在中,,,,则边中点,边的中点,直线DE斜率,于是得,即,所以直线的方程是:.【小问2详解】依题意,,则直线BC的斜率为,又,因此,直线的斜率为,所以直线的方程为:,即.18、(1)(2)或或(3)或【解析】(1)由二条已知直线求交点,代入第三条直线即可;(2)不能围成一个三角形,过二条已知直线的交点,或者与它们平行;(3)由直线互相垂直得,斜率之积为-1.【小问1详解】显然,相交,由得交点,由点代入得所以当,,相交时,.【小问2详解】过定点,因为,,不能围成三角形,所以,或与平行,或与平行,所以,或,或.【小问3详解】显然与不垂直,所以,且或所以的值为或19、(1)或;(2)8【解析】(1)根据题意设直线的方程为,联立,消去得,因为只有一个公共点,则求解.(2)抛物线的焦点为,设直线的方程为,联立,消去得,再根据过抛物线焦点的弦长公式求解.【详解】(1)设直线的方程为,联立,消去得,则,解得或,∴直线的方程为:或(2)抛物线的焦点为,则直线的方程为,设,联立,消去得,∴,∴【点睛】本题主要考查直线与抛物线的位置关系,还考查了运算求解的能力,属于中档题.20、(1)证明见解析(2)【解析】(1)直线方程变形后令的系数等于0消去参数即可求得定点坐标.(2)先求出圆心C到直线l距离,然后用勾股定理即可求得弦长.【小问1详解】,联立得:即直线l过定点(.【小问2详解】由题意直线l的斜率,即,∴,圆,圆心,半径,圆心C到直线l的距离,所以直线l被圆C所截得的弦长为.21、(1);(2)在单调递减,在单调递增【解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国果冻行业深度分析及发展趋势与投资战略研究报告
- 2025-2030中国机场航站楼标志行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国有机肥皂行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国智能监控管理系统行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国无纺布带行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国施工设备远程信息处理行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国换网器行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国护手霜市场深度调研及发展策略研究报告
- 2025-2030中国房地产投资管理解决方案行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国心脏病学软件行业市场发展趋势与前景展望战略研究报告
- 通信线路工程维护
- 无源物联网简介演示
- 宫腔积液疾病演示课件
- 国家中小学智慧教育平台培训专题讲座
- 网络教育能VS不能取代传统教育形式辩论赛-反方辩词一辩、二辩、三辩、四辩发言稿
- 软件工程实验报告 概要设计
- 心衰评估量表
- 如何在小学语文教学中贯穿创新教育获奖科研报告
- 2023年08月甘肃省农业科学院公开招聘30人笔试历年难易错点考题荟萃附带答案详解
- 应用翻译-华东交通大学中国大学mooc课后章节答案期末考试题库2023年
- 蓝色简约毕业答辩PPT通用模板
评论
0/150
提交评论