广东省广州市荔湾区真光中学2023年数学高二上期末考试试题含解析_第1页
广东省广州市荔湾区真光中学2023年数学高二上期末考试试题含解析_第2页
广东省广州市荔湾区真光中学2023年数学高二上期末考试试题含解析_第3页
广东省广州市荔湾区真光中学2023年数学高二上期末考试试题含解析_第4页
广东省广州市荔湾区真光中学2023年数学高二上期末考试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省广州市荔湾区真光中学2023年数学高二上期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2相外切,求动圆圆心M的轨迹方程()A.x2-=1(x≤-1) B.x2-=1C.x2-=1(x1) D.-x2=12.若圆与圆外切,则()A. B.C. D.3.已知双曲线的离心率,点是抛物线上的一动点,到双曲线的上焦点的距离与到直线的距离之和的最小值为,则该双曲线的方程为A. B.C. D.4.已知函数满足,则曲线在点处的切线方程为()A. B.C. D.5.直三棱柱ABC-A1B1C1中,△ABC为等边三角形,AA1=AB,M是A1C1的中点,则AM与平面所成角的正弦值为()A. B.C. D.6.在某次海军演习中,已知甲驱逐舰在航母的南偏东15°方向且与航母的距离为12海里,乙护卫舰在甲驱逐舰的正西方向,若测得乙护卫舰在航母的南偏西45°方向,则甲驱逐舰与乙护卫舰的距离为()A.海里 B.海里C.海里 D.海里7.在四面体中,为的中点,为棱上的点,且,则()A. B.C. D.8.命题“对任何实数,都有”的否定形式是()A.,使得B.,使得C.,使得D.,使得9.在试验“甲射击三次,观察中靶的情况”中,事件A表示随机事件“至少中靶1次”,事件B表示随机事件“正好中靶2次”,事件C表示随机事件“至多中靶2次”,事件D表示随机事件“全部脱靶”,则()A.A与C是互斥事件 B.B与C是互斥事件C.A与D是对立事件 D.B与D是对立事件10.圆心在直线上,且过点,并与直线相切的圆的方程为()A. B.C. D.11.某手机上网套餐资费:每月流量500M以下(包含500M),按20元计费;超过500M,但没超过1000M(包含1000M)时,超出部分按0.15元/M计费;超过1000M时,超出部分按0.2元/M计费,流量消费累计的总流量达到封顶值(15GB)则暂停当月上网服务.若小明使用该上网套餐一个月的费用是100元,则他的上网流量是()A.800M B.900MC.1025M D.1250M12.设点P是双曲线,与圆在第一象限的交点,、分别是双曲线的左、右焦点,且,则此双曲线的离心率为()A. B.C. D.3二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,,若向量与向量平行,则实数______14.以抛物线C的顶点为圆心的圆交C于、两点,交C的准线于、两点.,,则C的焦点到准线的距离为____.15.已知随机变量,且,则______.16.已知点P是双曲线右支上的一点,且以点P及焦点为定点的三角形的面积为4,则点P的坐标是_____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的焦点为,点在第一象限且为抛物线上一点,点在点右侧,且△恰为等边三角形(1)求抛物线的方程;(2)若直线与交于两点,向量的夹角为(其中为坐标原点),求实数的取值范围.18.(12分)已知一张纸上画有半径为4圆O,在圆O内有一个定点A,且,折叠纸片,使圆上某一点刚好与A点重合,这样的每一种折法,都留下一条直线折痕,当取遍圆上所有点时,所有折痕与的交点形成的曲线记为C.(1)求曲线C的焦点在轴上的标准方程;(2)过曲线C的右焦点(左焦点为)的直线l与曲线C交于不同的两点M,N,记的面积为S,试求S的取值范围.19.(12分)平面直角坐标系中,曲线与坐标轴交点都在圆上.(1)求圆的方程;(2)圆与直线交于,两点,在圆上是否存在一点,使得四边形为菱形?若存在,求出此时直线的方程;若不存在,说明理由.20.(12分)为深入学习贯彻总书记在党史学习教育动员大会上的重要讲话精神和中共中央有关决策部署,推动教育系统围绕建党百年重大主题,深化中学在校师生理想信念教育,引导师生学史明理、学史增信、学史崇德、学史力行,以昂扬的状态迎接中国共产党建党周年,哈工大附中高二年级组织本年级同学开展了一场党史知识竞赛.为了解本次知识竞赛的整体情况,随机抽取了名学生的成绩作为样本进行统计,得到如图所示的频率分布直方图(1)求直方图中a的值,并求该次知识竞赛成绩的第50百分位数(精确到0.1);(2)已知该样本分数在的学生中,男生占,女生占现从该样本分数在的学生中随机抽出人,求至少有人是女生的概率.21.(12分)已知等比数列的前项和为,且,.(1)求的通项公式;(2)求.22.(10分)设正项数列的前项和为,已知,(1)求数列的通项公式;(2)数列满足,数列的前项和为,若不等式对一切恒成立,求的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据双曲线定义求解【详解】,则根据双曲线定义知的轨迹为的左半支故选:A第II卷(非选择题2、C【解析】求得两圆的圆心坐标和半径,结合两圆相外切,列出方程,即可求解.【详解】由题意,圆与圆可得,,因为两圆相外切,可得,解得故选:C.3、B【解析】先根据离心率得,再根据抛物线定义得最小值为(为抛物线焦点),解得,即得结果.【详解】因为双曲线的离心率,所以,设为抛物线焦点,则,抛物线准线方程为,因此到双曲线的上焦点的距离与到直线的距离之和等于,因为,所以,即,即双曲线的方程为,选B.【点睛】本题考查双曲线方程、离心率以及抛物线定义,考查基本分析求解能力,属中档题.4、A【解析】求出函数的导数,利用导数的定义求解,然后求解切线的斜率即可【详解】解:函数,可得,,可得,即,所以,可得,解得,所以,所以曲线在点处的切线方程为故选:A5、B【解析】取的中点,以为原点,所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,即可根据线面角的向量公式求出【详解】如图所示,取的中点,以为原点,所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,不妨设,则,所以,平面的一个法向量为设AM与平面所成角为,向量与所成的角为,所以,即AM与平面所成角的正弦值为故选:B6、A【解析】利用正弦定理可求解.【详解】设甲驱逐舰、乙护卫舰、航母所在位置分别为A,B,C,则,,.在△ABC中,由正弦定理得,即,解得,即甲驱逐舰与乙护卫舰的距离为海里故选:A7、A【解析】利用空间向量加法运算,减法运算,数乘运算即可得到答案.【详解】如图故选:A8、B【解析】可将原命题变成全称命题形式,而全称命题的否定为特称命题,即可选出答案.【详解】命题“对任何实数,都有”,可写成:,使得,此命题为全称命题,故其否定形式为:,使得.故选:B.9、C【解析】根据互斥事件、对立事件的定义即可求解.【详解】解:因为A与C,B与C可能同时发生,故选项A、B不正确;B与D不可能同时发生,但B与D不是事件的所有结果,故选项D不正确;A与D不可能同时发生,且A与D为事件的所有结果,故选项C正确故选:C.10、A【解析】设圆的圆心,表示出半径,再由圆心到切线距离等于半径即可列出方程求得参数及圆的方程.【详解】∵圆的圆心在直线上,∴设圆心为(a,-a),∵圆过,∴半径r=,又∵圆与相切,∴半径r=,则,解得a=2,故圆心为(2,-2),半径为,故方程为.故选:A.11、C【解析】根据已知条件列方程,化简求得小明的上网流量.【详解】显然小明上网流量超过了1000M但远远没达到封顶值,假设超出部分为M,由得.故选:C12、C【解析】根据几何关系得到是直角三角形,然后由双曲线的定义及勾股定理可求解.【详解】点到原点的距离为,又因为在中,,所以是直角三角形,即.由双曲线定义知,又因为,所以.在中,由勾股定理得,化简得,所以.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】先求出的坐标,进而根据空间向量平行的坐标运算求得答案.【详解】由题意,,因为,所以存在实数使得.故答案为:2.14、2【解析】画出图形,设出抛物线方程,利用勾股定理以及圆的半径列出方程求解即可.【详解】解:设抛物线为y2=2px,如图:,又,解得,设圆的半径为,,解得:p=2,即C的焦点到准线的距离为:2.故答案为:2.15、【解析】根据二项分布的均值与方差的关系求得,再根据方差的性质求解即可.【详解】,所以,又因为,所以故答案为:12【点睛】本题主要考查了二项分布的均值与方差的计算,同时也考查了方差的性质,属于基础题.16、【解析】由题可得P到x轴的距离为1,把代入,得,可得P点坐标【详解】设,由题意知,所以,则,由题意可得,把代入,得,所以P点坐标为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据△恰为等边三角形由题意知:得到,再利用抛物线的定义求解;(2)联立,结合韦达定理,根据的夹角为,由求解.【小问1详解】解:由题意知:,由抛物线的定义知:,由,解得,所以抛物线方程为;【小问2详解】设,由,得,则,,则,,因为向量的夹角为,所以,,则,且,所以,解得,所以实数的取值范围.18、(1);(2)﹒【解析】(1)根据题意,作出图像,可得,由此可知M的轨迹C为以O、A为焦点的椭圆;(2)分为l斜率存在和不存在时讨论,斜率存在时,直线方程和椭圆方程联立,用韦达定理表示的面积,根据变量范围可求面积的最大值﹒【小问1详解】以OA中点G坐标原点,OA所在直线为x轴建立平面直角坐标系,如图:∴可知,,设折痕与和分别交于M,N两点,则MN垂直平分,∴,又∵,∴,∴M的轨迹是以O,A为焦点,4为长轴的椭圆.∴M的轨迹方程C为;【小问2详解】设,,则的周长为当轴时,l的方程为,,,当l与x轴不垂直时,设,由得,∵>0,∴,,,令,则,,∵,∴,∴.综上可知,S的取值范围是19、(1);(2)存在,直线方程为或.【解析】(1)利用待定系数法即求;(2)利用直线与圆的位置关系可得,然后利用菱形的性质可得圆心到直线的距离,即得.【小问1详解】曲线与轴的交点为,与轴的交点为,,设圆的方程为,则,解得.∴圆的方程为;【小问2详解】∵圆与直线交于,两点,圆化为,圆心坐标为,半径为.∴圆心到直线的距离,解得.假设存在点,使得四边形为菱形,则与互相平分,∴圆心到直线的距离,即,解得,经验证满足条件.∴存在点,使得四边形为菱形,此时的直线方程为或.20、(1)(2)【解析】(1)利用频率和为1求出a;利用百分位数的定义求出知识竞赛成绩的第50百分位数;(2)先利用分层抽样求出男、女生的人数,利用古典概型求概率.【小问1详解】,由,解得设该次知识竞赛成绩的第50百分位数为x,则,解得:.即该次知识竞赛成绩的第50百分位数为【小问2详解】由频率分布直方图可知:分数在)的人数有人,所以这人中,女生有人,记为、,男生有人,记为、、、从这人中随机选取人,基本事件为:、、、、、、、、、、、、、、,共种不同取法;则至少有人是女生的基本事件为、、、、、、、、,共种不同取法,则所求的概率为21、(1)(2)【解析】(1)设的公比为,根据题意求得的值,即可求得的通项公式;(2)由(1)求得,得到,利用等比数列

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论