




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省惠州市惠东县燕岭学校2024届高二数学第一学期期末达标检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等差数列且,则数列的前13项之和为()A.26 B.39C.104 D.522.“”是“”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.已知椭圆的左、右焦点分别为,,点P是椭圆上一点且的最大值为,则椭圆离心率为()A. B.C. D.4.已知三个顶点都在抛物线上,且为抛物线的焦点,若,则()A.6 B.8C.10 D.125.某汽车制造厂分别从A,B两类轮胎中各随机抽取了6个进行测试,下面列出了每一个轮胎行驶的最远里程(单位:)A类轮胎:94,96,99,99,105,107B类轮胎:95,95,98,99,104,109根据以上数据,下列说法正确的是()A.A类轮胎行驶的最远里程的众数小于B类轮胎行驶的最远里程的众数B.A类轮胎行驶的最远里程的极差等于B类轮胎行驶的最远里程的极差C.A类轮胎行驶的最远里程的平均数大于B类轮胎行驶的最远里程的平均数D.A类轮胎的性能更加稳定6.椭圆的长轴长为()A. B.C. D.7.已知向量,,则()A. B.C. D.8.设函数若函数有两个零点,则实数m的取值范围是()A. B.C. D.9.已知三棱柱中,,,D点是线段上靠近A的一个三等分点,则()A. B.C. D.10.设双曲线的左、右顶点分别为、,左、右焦点分别为、,以为直径的圆与双曲线左支的一个交点为若以为直径的圆与直线相切,则的面积为()A. B.C. D.11.已知函数f(x)=x(lnx-ax)有两个极值点,则实数a的取值范围是()A.(-∞,0) B.C.(0,1) D.(0,+∞)12.设椭圆()的左焦点为F,O为坐标原点.过点F且斜率为的直线与C的一个交点为Q(点Q在x轴上方),且,则C的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在四棱锥中,平面,底面为矩形,分别为的中点,连接,则点到平面的距离为__________.14.用一个平面去截半径为5cm的球,截面面积是则球心到截面的距离为_______15.直线l:y=-x+m与曲线有两个公共点,则实数m的取值范围是_______.16.已知点,,点P在x轴上,且,则点P的坐标为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)求函数的单调递减区间;(2)在中,角,,所对的边分别为,,,且满足,,求面积的最大值18.(12分)如图,在四棱锥S−ABCD中,已知四边形ABCD是边长为的正方形,点S在底面ABCD上的射影为底面ABCD的中心点O,点P在棱SD上,且△SAC的面积为1(1)若点P是SD的中点,求证:平面SCD⊥平面PAC;(2)在棱SD上是否存在一点P使得二面角P−AC−D的余弦值为?若存在,求出点P的位置;若不存在,说明理由19.(12分)为了了解高二段1000名学生一周课外活动情况,随机抽取了若干学生的一周课外活动时间,时间全部介于10分钟与110分钟之间,将课外活动时间按如下方式分成五组:第一组,第二组,…,第五组.按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右前3个组的频率之比为3∶8∶19,且第二组的频数为8(1)求第一组数据的频率并计算调查中随机抽取了多少名学生的一周课外活动时间;(2)求这组数据的平均数20.(12分)已知圆M的圆心在直线上,且圆心在第一象限,半径为3,圆M被直线截得的弦长为4.(1)求圆M的方程;(2)设P是直线上的动点,证明:以MP为直径的圆必过定点,并求所有定点的坐标.21.(12分)已知关于的不等式的解集为.(1)求的值;(2)若,求的最小值,并求此时的值.22.(10分)已知函数,且a0(1)当a=1时,求函数f(x)的单调区间;(2)记函数,若函数有两个零点,①求实数a的取值范围;②证明:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据等差数列的性质化简已知条件可得的值,再由等差数列前项和及等差数列的性质即可求解.【详解】由等差数列的性质可得:,,所以由可得:,解得:,所以数列的前13项之和为,故选:A2、B【解析】因但3、A【解析】根据椭圆的定义可得,从而得到,则,其中,再根据对勾函数的性质求出,即可得到方程,从求出椭圆的离心率;【详解】解:依题意,所以,又,所以,因为在上单调递减,所以当时函数取得最大值,即,即所以,即,所以,解得或(舍去)故选:A4、D【解析】设,,,由向量关系化为坐标关系,再结合抛物线的焦半径公式即可计算【详解】由得焦点,准线方程为,设,,由得则,化简得所以故选:D5、D【解析】根据众数、极差、平均数和方差的定义以及计算公式即可求解.【详解】解:对A:A类轮胎行驶的最远里程的众数为99,B类轮胎行驶的最远里程的众数为95,选项A错误;对B:A类轮胎行驶的最远里程的极差为13,B类轮胎行驶的最远里程的极差为14,选项B错误对C:A类轮胎行驶的最远里程的平均数为,B类轮胎行驶的最远里程的平均数为,选项C错误对D:A类轮胎行驶的最远里程的方差为,B类轮胎行驶的最远里程的方差为,故A类轮胎的性能更加稳定,选项D正确故选:D.6、D【解析】由椭圆方程可直接求得.【详解】由椭圆方程知:,长轴长为.故选:D.7、D【解析】按空间向量的坐标运算法则运算即可.【详解】.故选:D.8、D【解析】有两个零点等价于与的图象有两个交点,利用导数分析函数的单调性与最值,画出函数图象,数形结合可得结果.【详解】解:设,则,所以在上递减,在上递增,,且时,,有两个零点等价于与的图象有两个交点,画出的图象,如下图所示,由图可得,时,与的图象有两个交点,此时,函数有两个零点,实数m的取值范围是,故选:D.【点睛】方法点睛:本题主要考查分段函数的性质、利用导数研究函数的单调性、函数的零点,以及数形结合思想的应用,属于难题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质9、A【解析】在三棱柱中,,转化为结合已知条件计算即可.【详解】在三棱柱中,满足,且,则,,D点是线段上靠近A的一个三等分点,则,由向量的减法运算得,.故选:A【点睛】关键点点睛:在三棱柱中,,由向量的减法运算得,再展开利用数量积运算.10、C【解析】据三角形中位线可得;再由双曲线的定义求出,进而求出的面积【详解】双曲线的方程为:,,设以为直径的圆与直线相切与点,则,且,,∥.又为的中点,,又,,的面积为:.故选:C11、B【解析】函数f(x)=x(lnx﹣ax),则f′(x)=lnx﹣ax+x(﹣a)=lnx﹣2ax+1,令f′(x)=lnx﹣2ax+1=0得lnx=2ax﹣1,函数f(x)=x(lnx﹣ax)有两个极值点,等价于f′(x)=lnx﹣2ax+1有两个零点,等价于函数y=lnx与y=2ax﹣1的图象有两个交点,在同一个坐标系中作出它们的图象(如图)当a=时,直线y=2ax﹣1与y=lnx的图象相切,由图可知,当0<a<时,y=lnx与y=2ax﹣1的图象有两个交点则实数a的取值范围是(0,)故选B12、D【解析】连接Q和右焦点,可知|OQ|=,可得∠FQ=90°,由得,写出两直线方程,联立可得Q点坐标,Q点坐标代入椭圆标准方程可得a、b、c关系﹒【详解】设椭圆右焦点为,连接Q,∵,,∴|OQ|=,∴∠FQ=90°,∵,∴,FQ过F(-c,0),Q过(c,0),则,由,∵Q在椭圆上,∴,又,解得,∴离心率故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用转化法,根据线面平行的性质,结合三棱锥的体积等积性进行求解即可.【详解】设是的中点,连接,因为是的中点,所以,因为平面,平面,所以平面,因此点到平面的距离等于点到平面的距离,设为,因为平面,所以,,于是有,底面为矩形,所以有,,因为平面,所以,于是有:,由余弦定理可知:cos∠PEC=所以,因此,,因为,所以,故答案为:14、4cm【解析】根据圆面积公式算出截面圆的半径,利用球的截面圆性质与勾股定理算出球心到截面的距离【详解】解:设截面圆的半径为r,截面的面积是,,可得又球的半径为5cm,根据球的截面圆性质,可得截面到球心的距离为故答案为:4cm【点睛】本题主要考查了球的截面圆性质、勾股定理等知识,考查了空间想象能力,属于基础题15、【解析】曲线表示圆的右半圆,结合的几何意义,得出实数m的取值范围.【详解】曲线表示圆的右半圆,当直线与相切时,,即,由表示直线的截距,因为直线l与曲线有两个公共点,由图可知,所以.故答案为:.16、【解析】设,由,可得,求解即可【详解】设,由故解得:则点P的坐标为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由三角恒等变换公式化简,根据三角函数性质求解(2)由余弦定理与面积公式,结合基本不等式求解【小问1详解】由己知可得,由,解得:,故的单调递减区间是【小问2详解】,,故,得,由余弦定理得:,得,当且仅当时等号成立,故,面积最大值为18、(1)证明见解析(2)存在,点P为棱SD靠近点D的三等分点【解析】(1)由的面积为1,得到,,由,点P为SD的中点,所以,同理可得,根据线面垂直的判断定理可得平面PAC,再由面面垂直的判断定理可得答案;(2)存在,分别以OB,OC,OS所在直线为x,y,z轴,建立空间直角坐标系,假设在棱SD上存在点P,设,求出平面PAC、平面ACD的一个法向量,由二面角的向量法可得答案.【小问1详解】因为点S在底面ABCD上的射影为O,所以平面ABCD,因为四边形ABCD是边长为的正方形,所以,又因为的面积为1,所以,,所以,因为,点P为SD的中点,所以,同理可得,因为,AP,平面PAC,所以平面PAC,又平面SCD,∴平面平面PAC【小问2详解】存在,连接,由平面ABCD,平面ABCD,平面ABCD,又,可得两两垂直,分别以所在直线为x,y,z轴,建立空间直角坐标系,如图,则,,,,假设在棱SD上存在点P使二面角的余弦值为,设,,,所以,,设平面PAC的一个法向量为,则,因为,,所以,令,得,,因为平面ACD的一个法向量为,所以,化简得,解得或(舍),所以存在P点符合题意,点P为棱SD靠近点D的三等分点19、(1)0.06,50名(2)64(分钟)【解析】(1)利用频率和为1可求解频率,再利用频率,频数,总数之间的关系可求解学生人数;(2)平均数:频率分布直方图中每个小长方形的中点乘以对应的长方形面积之和;【小问1详解】设图中从左到右前3个组的频率分别为3x,8x,19x依题意,得所以.所以第一组数据的频率为,设调查中随机抽取了n名学生的课外活动时间,则,得,所以调查中随机抽取了50名学生的课外活动时间小问2详解】由题意,这组数据的平均数(分钟)20、(1);(2)证明见解析,定点和.【解析】(1)根据给定条件设出圆心坐标,再结合点到直线距离公式计算作答.(2)设点,求出圆的方程,结合方程求出其定点.【小问1详解】因圆M的圆心在直线上,且圆心在第一象限,设圆心,且,圆心到直线的距离为,又由解得,从而,而,解得,所以圆M的方程为.【小问2详解】由(1)知:,设点,,设动圆上任意一点当与点P,M都不重合时,,有,当与点P,M之一重合时,对应为零向量,也成立,,,,化简得:,由,解得或,所以以MP为直径的圆必过定点和.【点睛】方法点睛:待定系数法求圆的方程,由题设条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式21、(1);(2),.【解析】(1)利用根与系数的关系,得到等式和不等式,最后求出的值;(2)化简函数的解析式,利用基本不等式可以求出函数的最小值.【小问1详解】由题意知:,解得【小问2详解】由(1)知,∴,由对勾函数单调性知在上单调递减,∴,即当,函数的最小值为22、(1)函数f(x)在区间(0,+)上单调递减
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 考前全天候备战2023年高考数学试题及答案
- 精打细算的数学试题及答案
- 材料密封性能质量控制重点基础知识点
- 行政管理课程设置与试题答案建议
- 趋势分析的行政管理试题及答案
- 火灾保洁的应急预案方案(3篇)
- 车辆火灾应急预案范文(3篇)
- 病房火灾应急预案脚本(3篇)
- 2025年软件设计师考试解题思路试题及答案
- 学习节奏的个性化调整2025年计算机二级VB考试试题及答案
- 《安全生产法解读课件》
- 湖南省天壹名校联盟2025届高三5月适应性考试(物理)
- 2025年上海长宁区高三二模高考英语试卷试题(含答案详解)
- 印刷企业管理制度汇编
- 果洛藏族自治州玛沁县2024届六年级下学期小升初真题数学试卷含解析
- DL/T 5352-2018 高压配电装置设计规范
- (矿业有限公司)安全生产责任制度+安全生产责任制
- 甲烷氢呼气试验ppt课件
- 不锈钢方管尺寸及理论重量重量表
- 乡镇卫生院医疗质量管理制度(共10页)
- CNS4158H2040表面处理用盐水喷雾试验法
评论
0/150
提交评论