广东省江门市示范初中2023-2024学年数学高二上期末质量检测试题含解析_第1页
广东省江门市示范初中2023-2024学年数学高二上期末质量检测试题含解析_第2页
广东省江门市示范初中2023-2024学年数学高二上期末质量检测试题含解析_第3页
广东省江门市示范初中2023-2024学年数学高二上期末质量检测试题含解析_第4页
广东省江门市示范初中2023-2024学年数学高二上期末质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省江门市示范初中2023-2024学年数学高二上期末质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数在的最大值是()A. B.C. D.2.在区间内随机取一个数则该数满足的概率为()A. B.C. D.3.函数的值域为()A. B.C. D.4.已知呈线性相关的变量x与y的部分数据如表所示:若其回归直线方程是,则()x24568y34.5m7.59A.6.5 B.6C.6.1 D.75.甲、乙两组数的数据如茎叶图所示,则甲、乙的平均数、方差、极差及中位数相同的是()A.极差 B.方差C.平均数 D.中位数6.在直三棱柱中,,,,则异面直线与所成角的余弦值为()A. B.C. D.7.已知函数,则()A.函数的极大值为,无极小值 B.函数的极小值为,无极大值C.函数的极大值为0,无极小值 D.函数的极小值为0,无极大值8.不等式的解集为()A. B.C.或 D.或9.过抛物线()的焦点作斜率大于的直线交抛物线于,两点(在的上方),且与准线交于点,若,则A. B.C. D.10.如图,在四面体中,,,,D为BC的中点,E为AD的中点,则可用向量,,表示为()A. B.C. D.11.下列各式正确的是()A. B.C. D.12.在中,角A,B,C的对边分别为a,b,c,若,且,则为()A.等腰三角形 B.直角三角形C.锐角三角形 D.钝角三角形二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则f(e)=__.14.i为虚数单位,复数______15.等差数列,的前项和分别为,,且,则______.16.已知圆,圆,则两圆的公切线条数是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知O为坐标原点,、为椭圆C的左、右焦点,,P为椭圆C的上顶点,以P为圆心且过、的圆与直线相切(1)求椭圆C的标准方程;(2)若过点作直线l,交椭圆C于M,N两点(l与x轴不重合),在x轴上是否存在一点T,使得直线TM与TN的斜率之积为定值?若存在,请求出所有满足条件的点T的坐标;若不存在,请说明理由18.(12分)动点M到点的距离比它到直线的距离小,记M的轨迹为曲线C.(1)求C的方程;(2)已知圆,设P,A,B是C上不同的三点,若直线PA,PB均与圆D相切,若P的纵坐标为,求直线AB的方程.19.(12分)已知函数(1)讨论的单调区间;(2)求在上的最大值.20.(12分)如图,在三棱锥中,底面,.点,,分别为棱,,的中点,是线段的中点,,(1)求证:平面;(2)求二面角的正弦值;(3)已知点在棱上,且直线与直线所成角的余弦值为,求线段的长21.(12分)已知椭圆的焦距为,离心率为.(1)求椭圆的方程;(2)若斜率为1的直线与椭圆交于不同的两点,,求的最大值.22.(10分)如图,在多面体中,和均为等边三角形,D是的中点,.(1)证明:;(2)若,求多面体的体积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用函数单调性求解.【详解】解:因为函数是单调递增函数,所以函数也是单调递增函数,所以.故选:C2、C【解析】求解不等式,利用几何概型的概率计算公式即可容易求得.【详解】求解不等式可得:,由几何概型的概率计算公式可得:在区间内随机取一个数则该数满足的概率为.故选:.3、C【解析】根据基本不等式即可求出【详解】因为,当且仅当时取等号,所以函数的值域为故选:C4、A【解析】根据回归直线过样本点的中心进行求解即可.【详解】由题意可得,,则,解得故选:A.5、C【解析】根据茎叶图依次计算甲和乙的平均数、方差、中位数和极差即可得到结果.【详解】甲的平均数为:;乙的平均数为:;甲和乙的平均数相同;甲的方差为:;乙的方差为:;甲和乙的方差不相同;甲的极差为:;乙的极差为:;甲和乙的极差不相同;甲的中位数为:;乙的中位数为:;甲和乙的中位数不相同.故选:C.6、D【解析】以为坐标原点,向量,,方向分别为、、轴建立空间直角坐标系,利用空间向量夹角公式进行求解即可.【详解】以为坐标原点,向量,,方向分别为、、轴建立空间直角坐标系,则,,,,所以,,,,,因此异面直线与所成角的余弦值等于.故选:D.7、A【解析】利用导数来求得的极值.【详解】的定义域为,,在递增;在递减,所以的极大值为,没有极小值.故选:A8、A【解析】先将分式不等式转化为一元二次不等式,然后求解即可【详解】由,得,解得,所以原不等式的解集为,故选:A9、A【解析】分别过作准线的垂线,垂足分别为,设,则,,故选A.10、B【解析】利用空间向量的基本定理,用,,表示向量【详解】因为是的中点,是的中点,,故选:B11、C【解析】利用导数的四则运算即可求解.【详解】对于A,,故A错误;对于B,,故B错误;对于C,,故C正确;对于D,,故D错误;故选:C12、B【解析】由余弦定理可得,再利用可得答案.【详解】因为,所以,由余弦定理,因为,所以,又,∴,故为直角三角形.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由导数得出,再求.【详解】∵,∴,,解得,,,故答案为:.14、【解析】利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简求解即可.【详解】故答案为:.15、【解析】取,代入计算得到答案.【详解】,当时故答案为【点睛】本题考查了前项和和通项的关系,取是解题的关键.16、【解析】首先把圆的一般方程化为标准方程,进一步求出两圆的位置关系,可得两圆的公切线条数.【详解】解:由圆,可得:,可得其圆心为,半径为;由,可得,可得其圆心为,半径为2;所以可得其圆心距为:,可得:,故两圆相交,其公切线条数为,故答案为:2.【点睛】本题主要考查两圆的位置关系及两圆公切线条数的判断,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)存在;.【解析】(1)根据给定条件求出a,c,b即可作答.(2)联立直线l与椭圆C的方程,利用斜率坐标公式并结合韦达定理计算即可推理作答.【小问1详解】依题意,,,,由椭圆定义知:椭圆长轴长,即,而半焦距,即有短半轴长,所以椭圆C的标准方程为:【小问2详解】依题意,设直线l方程为,由消去x并整理得,设,,则,,假定存在点,直线TM与TN的斜率分别为,,,要使为定值,必有,即,当时,,,当时,,,所以存在点,使得直线TM与TN的斜率之积为定值【点睛】方法点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值18、(1)(2)【解析】(1)由抛物线的定义可得结论;(2)设,得PA的两点式方程为,由在抛物线上,化简直线方程为,然后由圆心到切线的距离等于半径得出的关系式,并利用得出点满足的等式,同理设得方程,最后由直线方程的定义可得直线方程【小问1详解】由题意得动点M到点的距离等于到直线的距离,所以曲线C是以为焦点,为准线的抛物线.设,则,于是C的方程为.【小问2详解】由(1)可知,设,PA的两点式方程为.由,,可得.因为PA与D相切,所以,整理得.因为,可得.设,同理可得于是直线AB的方程为.19、(1)①,在上单减;②,在上单增,单减;(2).【解析】(1),根据函数定义域,分,,讨论求解;(2)根据(1)知:分,,,讨论求解.【小问1详解】解:(1)定义域,①时,成立,所以在上递减;②时,当时,,当时,,所以在上单增,单减;【小问2详解】由(1)知:时,在单减,所以;时,在单减,所以;时,在上单增,上递减,所以;时,在单增,所以;综上:.20、(1)证明见解析;(2);(3)或【解析】本小题主要考查直线与平面平行、二面角、异面直线所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.首先要建立空间直角坐标系,写出相关点的坐标,证明线面平行只需求出平面的法向量,计算直线对应的向量与法向量的数量积为0,求二面角只需求出两个半平面对应的法向量,借助法向量的夹角求二面角,利用向量的夹角公式,求出异面直线所成角的余弦值,利用已知条件,求出的值.试题解析:如图,以A为原点,分别以,,方向为x轴、y轴、z轴正方向建立空间直角坐标系.依题意可得A(0,0,0),B(2,0,0),C(0,4,0),P(0,0,4),D(0,0,2),E(0,2,2),M(0,0,1),N(1,2,0).(1)证明:=(0,2,0),=(2,0,).设,为平面BDE的法向量,则,即.不妨设,可得.又=(1,2,),可得.因为平面BDE,所以MN//平面BDE.(2)解:易知为平面CEM的一个法向量.设为平面EMN的法向量,则,因为,,所以.不妨设,可得.因此有,于是.所以,二面角C—EM—N的正弦值为.(3)解:依题意,设AH=h(),则H(0,0,h),进而可得,.由已知,得,整理得,解得,或.所以,线段AH的长为或.【考点】直线与平面平行、二面角、异面直线所成角【名师点睛】空间向量是解决空间几何问题的锐利武器,不论是求空间角、空间距离还是证明线面关系利用空间向量都很方便,利用向量夹角公式求异面直线所成的角又快又准,特别是借助平面的法向量求线面角,二面角或点到平面的距离都很容易.21、(1);(2).【解析】(1)由题设可得且,结合椭圆参数关系求,即可得椭圆的方程;(2)设直线为,联立抛物线整理成一元二次方程的形式,由求m的范围,再应用韦达定理及弦长公式求关于m的表达式,根据二次函数性质求最值即可.小问1详解】由题设,且,故,,则,所以椭圆的方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论