




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省汕头市名校2023-2024学年高二数学第一学期期末复习检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.椭圆的焦点坐标为()A., B.,C., D.,2.在等差数列中,已知,则数列的前6项之和为()A.12 B.32C.36 D.723.已知是双曲线:的右焦点,是坐标原点,过作的一条渐近线的垂线,垂足为,并交轴于点.若,则的离心率为()A. B.C.2 D.4.若双曲线的渐近线方程为,则实数a的值为()A B.C.2 D.5.若且,则下列不等式中一定成立的是()A. B.C. D.6.已知函数,则的单调递增区间为().A. B.C. D.7.已知两定点和,动点在直线上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的短轴的最小值为()A. B.C. D.8.若正方体ABCDA1B1C1D1的棱长为1,则直线A1C1到平面ACD1的距离为()A.1 B.C. D.9.已知公比不为1的等比数列,其前n项和为,,则()A.2 B.4C.5 D.2510.已知直线:恒过点,过点作直线与圆:相交于A,B两点,则的最小值为()A. B.2C.4 D.11.已知x,y满足约束条件,则的最大值为()A.3 B.C.1 D.12.已知等差数列且,则数列的前13项之和为()A.26 B.39C.104 D.52二、填空题:本题共4小题,每小题5分,共20分。13.抛物线的焦点到准线的距离是______.14.若球的大圆的面积为,则该球的表面积为___________.15.若,满足约束条件,则的最小值为______.16.过抛物线的焦点作倾斜角为的直线,与抛物线分别交于两点(点在轴上方),_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)数列的前n项和为,(1)求数列的通项公式;(2)令,求数列的前n项和18.(12分)已知圆的圆心在直线上,与轴正半轴相切,且被直线:截得的弦长为.(1)求圆的方程;(2)设点在圆上运动,点,且点满足,记点的轨迹为.①求的方程,并说明是什么图形;②试探究:在直线上是否存在定点(异于原点),使得对于上任意一点,都有为一常数,若存在,求出所有满足条件的点的坐标,若不存在,说明理由.19.(12分)已知函数(1)若,求曲线在处的切线方程(2)讨论函数的单调性20.(12分)已知,,分别为三个内角,,的对边,.(Ⅰ)求;(Ⅱ)若=2,的面积为,求,.21.(12分)如图,已知圆台下底面圆的直径为,是圆上异于、的点,是圆台上底面圆上的点,且平面平面,,,、分别是、的中点.(1)证明:平面;(2)若直线上平面且过点,试问直线上是否存在点,使直线与平面所成的角和平面与平面的夹角相等?若存在,求出点的所有可能位置;若不存在,请说明理由.22.(10分)已知正项等差数列满足,(1)求数列的通项公式;(2)设,求数列的前项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由题方程化为椭圆的标准方程求出c,则椭圆的焦点坐标可求【详解】由题得方程可化为,所以所以焦点为故选:A.2、C【解析】利用等差数列的求和公式结合角标和定理即可求解.【详解】解:等差数列中,所以等差数列的前6项之和为:故选:C.3、A【解析】由条件建立a,b,c的关系,由此可求离心率的值.【详解】设,则,∵,∴,∴,∴,∴,∴,∴离心率,故选:A.4、D【解析】由双曲线的渐近线方程结合已知可得.【详解】双曲线方程为所以渐近线为,故,解得:.故选:D5、D【解析】根据不等式的性质即可判断.【详解】对于A,若,则不等式不成立;对于B,若,则不等式不成立;对于C,若均为负值,则不等式不成立;对于D,不等号的两边同乘负值,不等号的方向改变,故正确;故选:D【点睛】本题主要考查不等式的性质,需熟练掌握性质,属于基础题.6、D【解析】利用导数分析函数单调性【详解】的定义域为,,令,解得故的单调递增区间为故选:D7、B【解析】根据题意,点关于直线对称点的性质,以及椭圆的定义,即可求解.【详解】根据题意,设点关于直线的对称点,则,解得,即.根据椭圆的定义可知,,当、、三点共线时,长轴长取最小值,即,由且,得,因此椭圆C的短轴的最小值为.故选:B.8、B【解析】先证明点A1到平面ACD1的距离即为直线A1C1到平面ACD1的距离,再建立空间直角坐标系,利用向量法求解.【详解】因为平面平面,所以A1C1//平面ACD1,则点A1到平面ACD1的距离即为直线A1C1到平面ACD1的距离.建立如图所示的空间直角坐标系,易知=(0,0,1),由题得平面,所以平面,所以,同理,因为平面,所以平面,所以是平面一个法向量,所以平面ACD1的一个法向量为=(1,1,1),故所求的距离为.故选:B【点睛】方法点睛:求点到平面的距离常用的方法有:(1)几何法(找作证指求);(2)向量法;(3)等体积法.要根据已知条件灵活选择方法求解.9、B【解析】设等比数列的公比为,根据求得,从而可得出答案.【详解】解:设等比数列的公比为,则,所以,则.故选:B.10、A【解析】根据将最小值问题转化为d取得最大值问题,然后结合图形可解.【详解】将,变形为,故直线恒过点,圆心,半径,已知点P在圆内,过点作直线与圆相交于A,两点,记圆心到直线的距离为d,则,所以当d取得最大值时,有最小值,结合图形易知,当直线与线段垂直的时候,d取得最大值,即取得最小值,此时,所以.故选:A.11、A【解析】由题意首先画出可行域,然后结合目标函数的几何意义求解最大值即可.【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点A的坐标为:,据此可知目标函数的最大值为:.故选:A【点睛】方法点睛:求线性目标函数的最值,当时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.12、A【解析】根据等差数列的性质化简已知条件可得的值,再由等差数列前项和及等差数列的性质即可求解.【详解】由等差数列的性质可得:,,所以由可得:,解得:,所以数列的前13项之和为,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】由y2=2px=8x知p=4,又焦点到准线的距离就是p,所以焦点到准线的距离为4.14、【解析】设球的半径为,则球的大圆的半径为,根据圆的面积公式列方程求出,再由球的表面积公式即可求解.【详解】设球的半径为,则球的大圆的半径为,所以球的大圆的面积为,可得,所以该球的表面积为.故答案为:.15、0【解析】作出约束条件对应的可行域,当目标函数过点时,取得最小值,求解即可.【详解】作出约束条件对应的可行域,如下图阴影部分,联立,可得交点为,目标函数可化为,当目标函数过点时,取得最小值,即.故答案为:0.【点睛】本题考查线性规划,考查数形结合的数学思想的应用,考查学生的计算求解能力,属于基础题.16、3【解析】根据抛物线焦半径公式,所以.故答案为:3.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据给定条件结合“当时,”计算作答.(2)由(1)求出,利用裂项相消法计算得解.【小问1详解】数列的前n项和为,,当时,,当时,,满足上式,则,所以数列的通项公式是【小问2详解】由(1)知,,所以,所以数列的前n项和18、(1);(2)①,圆;②存在,.【解析】(1)设圆心,根据题意,得到半径,根据弦长的几何表示,由题中条件,列出方程求解,得出,从而可得圆心和半径,进而可得出结果;(2)①设,根据向量的坐标表示,由题中条件,得到,代入圆的方程,即可得出结果;②假设存在一点满足(其中为常数),设,根据题意,得到,再由①,得到,两式联立化简整理,得到,推出,求解得出,即可得出结果.【详解】(1)设圆心,则由圆与轴正半轴相切,可得半径.∵圆心到直线的距离,由,解得.故圆心为或,半径等于.∵圆与轴正半轴相切圆心只能为故圆的方程为;(2)①设,则:,,∵点A在圆上运动即:所以点的轨迹方程为,它是一个以为圆心,以为半径的圆;②假设存在一点满足(其中为常数)设,则:整理化简得:,∵在轨迹上,化简得:,所以整理得,解得:;存在满足题目条件.【点睛】本题主要考查求圆的方程,考查圆中的定点问题,涉及圆的弦长公式等,属于常考题型.19、(1)(2)答案见解析【解析】(1)根据导数的几何意义可求得切线斜率,结合切点可得切线方程;(2)求导后,分别在、和的情况下,根据的正负可得的单调性.【小问1详解】当时,,,,又,在处的切线方程为:,即;【小问2详解】,令,解得:,;当时,,在上单调递增;当时,若或,则;若,则;在和上单调递增,在上单调递减;当时,若或,则;若,则;在和上单调递增,在上单调递减;综上所述:当时,在上单调递增;当时,在和上单调递增,在上单调递减;当时,在和上单调递增,在上单调递减.20、(1)(2)=2【解析】(Ⅰ)由及正弦定理得由于,所以,又,故.(Ⅱ)的面积==,故=4,而故=8,解得=221、(1)证明见解析;(2)存在,点与点重合.【解析】(1)证明出,利用面面垂直的性质可证得结论成立;(2)以为坐标原点,为轴,为轴,过垂直于平面的直线为轴,建立空间直角坐标系,易知轴在平面内,分析可知,设点,利用空间向量法结合同角三角函数的基本关系可得出关于的方程,解出的值,即可得出结论.【小问1详解】证明:因为为圆的一条直径,且是圆上异于、的点,故,又因平面平面,平面平面,平面,所以平面.【小问2详解】解:存在,理由如下:如图,以为坐标原点,为轴,为轴,过垂直于平面的直线为轴,建立空间直角坐标系,易知轴在平面内,则,,,,,,由直线平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025园林绿化设计合同范本
- 2025劳动合同协议书范本模板
- 2025企业合同终止的情形分析:合规解除劳动合同的途径与条件
- 江苏省镇江市2024-2025学年高一上学期期中检测生物试卷 含解析
- 腰椎疼痛康复护理
- 脊柱外科术后护理
- 静脉留置消毒护理
- 心脏支架术后护理规范
- 【方案】2024咪咕全域营销媒体手册6928mb
- 三晋卓越联盟·2024-2025学年高三5月质量检测卷(25-X-635C)生物(B)
- 中国美术史高中课件
- 2025年广东佛山市三水海江建设投资有限公司招聘笔试参考题库含答案解析
- 初中英语人教新目标 (Go for it) 版七年级下册Unit 7 Its raining!Section A教学设计
- 清理罐车合同协议
- 新团员培训第一课:青年你为什么要入团
- 民法典物权编详细解读课件
- 2025年《铁道概论》考试复习题库(含答案)
- 2025-2030中国组合蒸汽烤箱行业市场发展趋势与前景展望战略研究报告
- 2025年地理会考简答题思路模板
- 鼻饲误吸的预防与处理
- 2025代谢相关脂肪性肝病基层诊疗与管理指南解读课件
评论
0/150
提交评论