广东省仲元中学2023-2024学年高二数学第一学期期末考试试题含解析_第1页
广东省仲元中学2023-2024学年高二数学第一学期期末考试试题含解析_第2页
广东省仲元中学2023-2024学年高二数学第一学期期末考试试题含解析_第3页
广东省仲元中学2023-2024学年高二数学第一学期期末考试试题含解析_第4页
广东省仲元中学2023-2024学年高二数学第一学期期末考试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省仲元中学2023-2024学年高二数学第一学期期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,a,b,c分别为角A,B,C的对边,已知,,的面积为,则()A. B.C. D.2.在如图所示的茎叶图中,若甲组数据的众数为16,则乙组数据的平均数为()A.12 B.10C.8 D.63.(一)单项选择函数在处的导数等于()A.0 B.C.1 D.e4.已知函数的图象如图所示,则不等式的解集为()A. B.C. D.5.已知点在抛物线上,则点到抛物线焦点的距离为()A.1 B.2C.3 D.46.已知直线为抛物线的准线,直线经过抛物线的焦点,与抛物线交于点,则的最小值为()A. B.C.4 D.87.已知函数,在定义域内任取一点,则使的概率是()A. B.C. D.8.下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,如果输入a=102,b=238,则输出的a的值为()A.17 B.34C.36 D.689.若构成空间的一个基底,则下列向量能构成空间的一个基底的是()A.,, B.,,C.,, D.,,10.若倾斜角为的直线过,两点,则实数()A. B.C. D.11.过点且平行于直线的直线的方程为()A. B.C. D.12.在等比数列中,,则等于()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.双曲线的左焦点到直线的距离为________.14.已知函数,是其导函数,若曲线的一条切线为直线:,则的最小值为___________.15.正四棱柱中,,,点为底面四边形的中心,点在侧面四边形的边界及其内部运动,若,则线段长度的最大值为__________16.机动车驾驶考试是为了获得机动车驾驶证的考试,采用全国统一的考试科目内容及合格标准,包括科目一理论考试、科目二场地驾驶技能考试、科目三道路驾驶技能考试和科目四安全文明常识考试共四项考试,考生应依次参加四项考试,前一项考试合格后才能报名参加后一项考试,考试不合格则需另行交费预约再次补考.据公安部门通报,佛山市四项考试的合格率依次为,,,,且各项考试是否通过互不影响,则一位佛山公民通过驾考四项考试至多需要补考一次的概率为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,平面,底面为矩形,,,为的中点,.请用空间向量知识解答下列问题:(1)求线段的长;(2)若为线段上一点,且,求平面与平面夹角的余弦值.18.(12分)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E,F分别为棱BC,CD的中点(1)求证:D1F平面A1EC1;(2)求直线AC1与平面A1EC1所成角的正弦值.19.(12分)如图,已知平行六面体中,底面ABCD是边长为1的正方形,,,设,,(1)用,,表示,并求;(2)求20.(12分)已知数列的前项和满足(1)证明:数列为等比数列;(2)若数列为等差数列,且,,求数列的前项和21.(12分)某话剧表演小组由名学生组成,若从这名学生中任意选取人,其中恰有名男生的概率是.(1)求该小组中男、女生各有多少人?(2)若这名学生站成一排照相留念,求所有排法中男生不相邻的概率.22.(10分)已知函数,.(1)讨论函数的单调性;(2)若不等式在上恒成立,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用面积公式,求出,进而求出,利用余弦定理求出,再利用正弦定理求出【详解】由面积公式得:,因为的面积为,所以,求得:因,所以由余弦定理得:所以由正弦定理得:,即,解得:故选:C2、A【解析】根据众数的概念,求得的值,再根据平均数的计算公式,即可求解.【详解】由题意,甲组数据的众数为16,得,所以乙组数据的平均数为故选:A.3、B【解析】利用导数公式求解.【详解】因为函数,所以,所以,故选;B4、D【解析】原不等式等价于,根据的图象判断函数的单调性,可得和的解集,再分情况或解不等式即可求解.【详解】由函数的图象可知:在和上单调递增,在上单调递减,所以当时,;当时,;由可得,所以或,即或,解得:或,所以原不等式的解集为:,故选:D.5、B【解析】先求出抛物线方程,焦点坐标,再用两点间距离公式进行求解.【详解】将代入抛物线中得:,解得:,所以抛物线方程为,焦点坐标为,所以点到抛物线焦点的距离为故选:B6、D【解析】先求抛物线的方程,再联立直线方程和抛物线方程,由弦长公式可求的最小值.【详解】因为直线为抛物线的准线,故即,故抛物线方程为:.设直线,则,,而,当且仅当等号成立,故的最小值为8,故选:D.7、A【解析】解不等式,根据与长度有关的几何概型即可求解.【详解】由题意得,即,由几何概型得,在定义域内任取一点,使的概率是.故选:A.8、B【解析】根据程序框图所示代入运行即可.【详解】初始输入:;第一次运算:;第二次运算:;第三次运算:;第四次运算:;结束,输出34.故选:B.9、B【解析】由空间向量内容知,构成基底的三个向量不共面,对选项逐一分析【详解】对于A:,因此A不满足题意;对于B:根据题意知道,,不共面,而和显然位于向量和向量所成平面内,与向量不共面,因此B正确;对于C:,故C不满足题意;对于D:显然有,选项D不满足题意.故选:B10、C【解析】根据直线的倾斜角和斜率的关系得到直线的斜率为,再根据两点的斜率公式计算可得;【详解】解:因为直线的倾斜角为,所以直线的斜率为,所以,解得;故选:C11、B【解析】根据平行设直线方程,代入点计算得到答案.【详解】设直线方程为,将点代入直线方程得到,解得.故直线方程为:.故选:B.12、C【解析】根据,然后与,可得,最后简单计算,可得结果.【详解】在等比数列中,由所以,又,所以所以故选:C【点睛】本题考查等比数列的性质,重在计算,当,在等差数列中有,在等比数列中,灵活应用,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据双曲线方程求得左焦点的坐标,利用点到直线的距离公式即可求得结果.【详解】因为双曲线的方程为,设其左焦点的坐标为,故可得,解得,故左焦点的坐标为,则其到直线的距离.故答案为:.14、【解析】设直线与曲线相切的切点为,借助导数的几何意义用表示出m,n即可作答.【详解】设直线与曲线相切的切点为,而,则直线的斜率,于是得,即,由得,而,于是得,即因,则,,当且仅当时取“=”,所以的最小值为.故答案为:【点睛】结论点睛:函数y=f(x)是区间D上的可导函数,则曲线y=f(x)在点处的切线方程为:.15、【解析】根据正四棱柱的性质、矩形的性质,线面垂直的判定定理,结合勾股定理进行求解即可.【详解】当位于点时,因为是正方形,所以,由正四棱柱的性质可知,平面,因为平面,所以,因为平面,所以平面,平面,所以,因此当位于点时,满足题意,当点位于边点时,若,在矩形中,,因为,所以,因此,所以有,此时,又平面,所以平面,故点的轨迹在线段上,,所以线段长度的最大值为.故答案为:关键点睛:利用特殊点判断出点的轨迹是解题的关键.16、【解析】至多需要补考一次,分5种情况分别计算后再求和即可.【详解】不需要补考就通过的概率为;仅补考科目一就通过的概率为;仅补考科目二就通过的概率为;仅补考科目三就通过的概率为;仅补考科目三就通过的概率为,一位佛山公民通过驾考四项考试至多需要补考一次的概率为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,设,由已知可得出,求出的值,即可得解;(2)利用空间向量法可求得平面与平面夹角的余弦值.【小问1详解】解:平面,,以点为坐标原点,、、所在直线分别为、、轴建立如图所示的空间直角坐标系,设,则、、、,则,,,则,解得,故.【小问2详解】解:,则,又、、,所以,,,设为平面的法向量,则,取,可得,显然,为平面的一个法向量,,因此,平面与平面夹角的余弦值为.18、(1)证明见解析;(2).【解析】(1)建立空间直角坐标系,利用向量法证得平面.(2)利用向量法求得直线与平面所成角的正弦值.【详解】(1)建立如图所示空间直角坐标系.,,设平面的法向量为,则,故可设.由于,所以平面.(2)直线与平面所成角为,则.19、(1),(2)0【解析】(1)把,,作为基底,利用空间向量基本定理表示,然后根据已知的数据求,(2)先把用基底表示,然后化简求解【小问1详解】因为,,,,所以,因为底面ABCD是边长为1的正方形,,,所以【小问2详解】因为,底面ABCD是边长为1的正方形,,,所以20、(1)证明见解析(2)【解析】(1)由与的关系,利用等比数列的定义证明即可;(2)由(1)求出,再利用裂项相消法求解即可【小问1详解】当时,,,当时,,,,数列是以为首项、以为公比的等比数列【小问2详解】由(1)得,,即,,设等差数列的公差为,则,,,,,21、(1)男生人数为,女生人数为;(2).【解析】(1)设男生的人数为,则女生人数为,且,根据组合计数原理结合古典概型的概率公式可求得的值,即可得解;(2)利用插空法结合古典概型的概率公式可求得所求事件的概率.【小问1详解】解:设男生的人数为,则女生人数为,且,由已知可得,即,因为且,解得,所以,该小组中男生人数为,女生人数为.【小问2详解】解:若男生不相邻,则先将女生全排,然后在女生所形成的个空中选个空插入男生,因此,所有排法中男生不相邻的概率为.22、(1)时,函数在单调递增,无减区间;时,函数在单调递增,在单调递减.(2).【解析】(1)对求导得到,分和进行讨论,判断出的正负,从而得到的单调性;(2)设函数,分和进行讨论,根据的单

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论