贵州省贵阳市示范名校2023-2024学年高二数学第一学期期末监测模拟试题含解析_第1页
贵州省贵阳市示范名校2023-2024学年高二数学第一学期期末监测模拟试题含解析_第2页
贵州省贵阳市示范名校2023-2024学年高二数学第一学期期末监测模拟试题含解析_第3页
贵州省贵阳市示范名校2023-2024学年高二数学第一学期期末监测模拟试题含解析_第4页
贵州省贵阳市示范名校2023-2024学年高二数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省贵阳市示范名校2023-2024学年高二数学第一学期期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若直线:与直线:平行,则a的值是()A.1 B.C.或6 D.或72.某一电子集成块有三个元件a,b,c并联构成,三个元件是否有故障相互独立.已知至少1个元件正常工作,该集成块就能正常运行.若每个元件能正常工作的概率均为,则在该集成块能够正常工作的情况下,有且仅有一个元件出现故障的概率为()A. B.C. D.3.若抛物线上的点到其焦点的距离是到轴距离的倍,则等于A. B.1C. D.24.圆与直线的位置关系是()A.相交 B.相切C.相离 D.不能确定5.设抛物线的焦点为,准线与轴的交点为,是上一点,若,则()A. B.C. D.6.执行如图所示的算法框图,则输出的结果是()A. B.C. D.7.数列满足,且,是函数的极值点,则的值是()A.2 B.3C.4 D.58.已知点是点在坐标平面内的射影,则点的坐标为()A. B.C. D.9.等差数列的首项为正数,其前n项和为.现有下列命题,其中是假命题的有()A.若有最大值,则数列的公差小于0B.若,则使的最大的n为18C.若,,则中最大D.若,,则数列中的最小项是第9项10.已知函数,,若,使得,则实数的取值范围是()A. B.C. D.11.如图所示,为了测量A,B处岛屿的距离,小张在D处观测,测得A,B分别在D处的北偏西、北偏东方向,再往正东方向行驶10海里至C处,观测B在C处的正北方向,A在C处的北偏西方向,则A,B两处岛屿间的距离为()海里.A. B.C. D.1012.一盒子里有黑色、红色、绿色的球各一个,现从中选出一个球.事件选出的球是红色,事件选出的球是绿色.则事件与事件()A.是互斥事件,不是对立事件 B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件 D.既不是互斥事件也不是对立事件二、填空题:本题共4小题,每小题5分,共20分。13.设椭圆,点在椭圆上,求该椭圆在P处的切线方程______.14.定义离心率是的椭圆为“黄金椭圆”.已知椭圆是“黄金椭圆”,则_________.若“黄金椭圆”两个焦点分别为、,P为椭圆C上的异于顶点的任意一点,点M是的内心,连接并延长交于点N,则________.15.已知数列满足0,,则数列的通项公式为____,则数列的前项和______16.已知圆柱轴截面是边长为4的正方形,则圆柱的侧面积为______________

.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某消费者协会在3月15号举行了以“携手共治,畅享消费”为主题的大型宣传咨询服务活动,着力提升消费者维权意识,组织方从参加活动的群众中随机抽取120名群众,按年龄将这120名群众分成5组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.(1)求图中m的值;(2)估算这120名群众的年龄的中位数(结果精确到0.1);(3)已知第1组群众中男性有2人,组织方要从第1组中随机抽取2名群众组成维权志愿者服务队,求恰有一名女性的概率.18.(12分)已知椭圆与双曲线有相同的焦点,且的短轴长为(1)求的方程;(2)若直线与交于P,Q两点,,且的面积为,求k19.(12分)已知椭圆的离心率为,且点在C上.(1)求椭圆C的标准方程;(2)设,为椭圆C的左,右焦点,过右焦点的直线l交椭圆C于A,B两点,若内切圆的半径为,求直线l的方程.20.(12分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC(2)设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积21.(12分)已知三棱柱中,.(1)求证:平面平面.(2)若,在线段上是否存在一点使平面和平面所成角的余弦值为若存在,确定点的位置;若不存在,说明理由.22.(10分)已知函数为常数,函数.(1)讨论函数的单调性;(2)若函数的图象与直线相切,求实数的值;(3)当时,在上有两个极值点且恒成立,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据直线平行的充要条件即可求出【详解】依题意可知,显然,所以由可得,,解得或7故选:D2、A【解析】记事件为该集成块能够正常工作,事件为仅有一个元件出现故障,进而结合对立事件的概率公式得,再根据条件概率公式求解即可.【详解】解:记事件为该集成块能够正常工作,事件为仅有一个元件出现故障,则为该集成块不能正常工作,所以,,所以故选:A3、D【解析】根据抛物线的定义及题意可知3x0=x0+,得出x0求得p,即可得答案【详解】由题意,3x0=x0+,∴x0=∴∵p>0,∴p=2.故选D【点睛】本题主要考查了抛物线的定义和性质.考查了考生对抛物线定义的掌握和灵活应用,属于基础题4、B【解析】用圆心到直线的距离与半径的大小判断【详解】解:圆的圆心到直线的距离,等于圆的半径,所以圆与直线相切,故选:B5、D【解析】求出抛物线的准线方程,可得出点的坐标,利用抛物线的定义可求得点的坐标,再利用两点间的距离公式可求得结果.【详解】易知抛物线焦点为,准线方程为,可得准线与轴的交点,设点,由抛物线的性质,,可得,所以,,解得,即点,所以.故选:D.6、B【解析】列举出循环的每一步,利用裂项相消法可求得输出结果.【详解】第一次循环,不成立,,;第二次循环,不成立,,;第三次循环,不成立,,;以此类推,最后一次循环,不成立,,.成立,跳出循环体,输出.故选:B.7、C【解析】利用导数即可求出函数的极值点,再利用等差数列的性质及其对数的运算性质求解即可【详解】由,得,因为,是函数的极值点,所以,是方程两个实根,所以,因为数列满足,所以,所以数列为等差数列,所以,所以,故选:C8、D【解析】根据空间中射影的定义即可得到答案.【详解】因为点是点在坐标平面内的射影,所以的竖坐标为0,横、纵坐标与A点的横、纵坐标相同,所以点的坐标为.故选:D9、B【解析】由有最大值可判断A;由,可得,,利用可判断BC;,得,,可判断D.【详解】对于选项A,∵有最大值,∴等差数列一定有负数项,∴等差数列为递减数列,故公差小于0,故选项A正确;对于选项B,∵,且,∴,,∴,,则使的最大的n为17,故选项B错误;对于选项C,∵,,∴,,故中最大,故选项C正确;对于选项D,∵,,∴,,故数列中的最小项是第9项,故选项D正确.故选:B.10、A【解析】由定义证明函数的单调性,再由函数不等式恒能成立的性质得出,从而得出实数的取值范围.【详解】任取,,即函数在上单调递减,若,使得,则即故选:A【点睛】结论点睛:本题考查不等式恒成立问题,解题关键是转化为求函数的最值,转化时要注意全称量词与存在量词对题意的影响.等价转化如下:(1),,使得成立等价于(2),,不等式恒成立等价于(3),,使得成立等价于(4),,使得成立等价于11、C【解析】分别在和中,求得的长度,再在中,利用余弦定理,即可求解.【详解】如图所示,可得,所以,在中,可得,在直角中,因为,所以,在中,由余弦定理可得,所以.故选:C.12、A【解析】根据事件的关系进行判断即可.【详解】由题意可知,事件与为互斥事件,但事件不是必然事件,所以,事件与事件是互斥事件,不是对立事件.故选:A.【点睛】本题考查事件关系的判断,考查互斥事件和对立事件概率的理解,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意可知切线的斜率存在,所以设切线方程为,代入椭圆方程中整理化简,令判别式等于零,可求出的值,从而可求得切线方程【详解】由题意可知切线的斜率存在,所以设切线方程为,将代入中得,,化简整理得,令,化简整理得,即,解得,所以切线方程为,即,故答案为:14、①.②.【解析】第一空,直接套入“黄金椭圆”新定义即可,第二空,从内切圆入手,找到等量关系,进而得到,求解即可【详解】由题,,所以如图,连接,设内切圆半径为,则,即,∴,∴,∴∴,∴故答案为:;【点睛】本题从新定义出发,第一空直接套用定义可得答案,第二空升华,需要在理解新定义的基础上,借助内切圆的相关公式求解,层层递进,是一道好题.关键点在于找到“”这一关系15、①.②.【解析】第一空:先构造等比数列求出,即可求出的通项公式;第二空:先求出,令,通过错位相减求出的前项和为,再结合等差数列的求和公式及分组求和即可求解.【详解】第一空:由可得,又,则是以1为首项,2为公比的等比数列,则,则;第二空:,设,前项和为,则,,两式相减得,则,又,则.故答案为:;.16、【解析】由圆柱轴截面的性质知:圆柱体的高为,底面半径为,根据圆柱体的侧面积公式,即可求其侧面积.【详解】由圆柱的轴截面是边长为4的正方形,∴圆柱体的高为,底面半径为,∴圆柱的侧面积为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】(1)由频率分布直方图中所有频率和为1求出;(2)求出概率对应的值即为中位数;(3)求出第一组中总人数,得女性人数,然后求得恰有一名女性的方法数和总的方法数后可得概率【小问1详解】解:因为频率分布直方图的小矩形面积和为1,所以,解得,【小问2详解】解:前2组频率和为,前3组频率和为,所以中位数在第3组,设中位数为,则,;【小问3详解】解:第一组总人数为,男性人2人,则女性有4人,不妨记两名男性为,四名女性为,则随机抽取2名群众的可能为,,,共15种方案,其中恰有一名女性的方法数,共8种,所以第1组中随机抽取2名群众组成维权志愿者服务队,求恰有一名女性的概率为18、(1)(2)或k=1.【解析】(1)根据题意求得双曲线的焦点即知椭圆焦点,结合椭圆短轴长,可求得椭圆标准方程;(2)将直线方程和椭圆方程联立,整理得,从而得到根与系数的关系式,然后求出弦长以及到直线PQ的距离,进而表示出,由题意得关于k的方程,解得答案.【小问1详解】双曲线即,故双曲线交点坐标为,由此可知椭圆焦点也为,又的短轴长为,故,所以,故椭圆的方程为;【小问2详解】联立,整理得:,其,设,则,所以=,点到直线PQ的距离为,所以=,又的面积为,则=,解得或k=1.19、(1)(2)或.【解析】(1)根据离心率可得的关系,再将的坐标代入方程后可求,从而可得椭圆的方程.(2)设直线的方程为,,结合内切圆的半径为可得,联立直线方程和椭圆方程,消元后结合韦达定理可得关于的方程,求出其解后可得直线方程.【小问1详解】因为椭圆的离心率为,故可设,故椭圆方程为,代入得,故,故椭圆方程为:.【小问2详解】的周长为,故.设,由题设可得直线与轴不重合,故可设直线,则,由可得,整理得到,此时,故,解得,故直线的方程为:或.20、【解析】(Ⅰ)连接BD交AC于O点,连接EO,只要证明EO∥PB,即可证明PB∥平面AEC;(Ⅱ)延长AE至M连结DM,使得AM⊥DM,说明∠CMD=60°,是二面角的平面角,求出CD,即可三棱锥E-ACD的体积试题解析:(1)证明:连接BD交AC于点O,连接EO.因为ABCD为矩形,所以O为BD中点又E为PD的中点,所以EO∥PB.因为EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC.(2)因为PA⊥平面ABCD,ABCD为矩形,所以AB,AD,AP两两垂直如图,以A为坐标原点,,AD,AP的方向为x轴y轴z轴的正方向,||为单位长,建立空间直角坐标系A­xyz,则D,E,=.设B(m,0,0)(m>0),则C(m,,0),=(m,,0)设n1=(x,y,z)为平面ACE的法向量,则即可取n1=.又n2=(1,0,0)为平面DAE的法向量,由题设易知|cos〈n1,n2〉|=,即=,解得m=.因为E为PD的中点,所以三棱锥E­ACD的高为.三棱锥E­ACD的体积V=××××=.考点:二面角的平面角及求法;棱柱、棱锥、棱台的体积;直线与平面平行的判定21、(1)证明见解析;(2)在线段上存在一点,且P是靠近C的四等分点.【解析】(1)连接,根据给定条件证明平面得即可推理作答.(2)在平面内过C作,再以C为原点,射线CA,CB,Cz分别为x,y,z轴正半轴建立空间直角坐标系,利用空间向量计算判断作答.【小问1详解】在三棱柱中,四边形是平行四边形,而,则是菱形,连接,如图,则有,因,,平面,于是得平面,而平面,则,由得,,平面,从而得平面,又平面,所以平面平面.【小问2详解】在平面内过C作,由(1)知平面平面,平面平面,则平面,以C为原点,射线CA,CB,Cz分别为x,y,z轴正半轴建立空间直角坐标系,如图,因,,则,假设在线段上存在符合要求的点P,设其坐标为,则有,设平面的一个法向量,则有,令得,而平面的一个法向量,依题意,,化简整理得:而,解得,所以在线段上存在一点,且P是靠近C的四等分点,使平面和平面所成角的余弦值为.22、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论