海南省东方市琼西中学2023-2024学年数学高二上期末预测试题含解析_第1页
海南省东方市琼西中学2023-2024学年数学高二上期末预测试题含解析_第2页
海南省东方市琼西中学2023-2024学年数学高二上期末预测试题含解析_第3页
海南省东方市琼西中学2023-2024学年数学高二上期末预测试题含解析_第4页
海南省东方市琼西中学2023-2024学年数学高二上期末预测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

海南省东方市琼西中学2023-2024学年数学高二上期末预测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.金刚石的成分为纯碳,是自然界中天然存在的最坚硬物质,它的结构是由8个等边三角形组成的正八面体.若某金刚石的棱长为2,则它的体积为()A. B.C. D.2.已知圆,为圆外的任意一点,过点引圆的两条切线、,使得,其中、为切点.在点运动的过程中,线段所扫过图形的面积为()A. B.C. D.3.已知,,若,则()A.9 B.6C.5 D.34.已知直线,若异面,,则的位置关系是()A.异面 B.相交C.平行或异面 D.相交或异面5.已知直线过点且与直线平行,则直线方程为()A. B.C. D.6.甲乙两个雷达独立工作,它们发现飞行目标的概率分别是0.9和0.8,飞行目标被雷达发现的概率为()A.0.72 B.0.26C.0.7 D.0.987.圆与圆的位置关系是()A.相交 B.相离C.内切 D.外切8.已知数列的通项公式为,按项的变化趋势,该数列是()A.递增数列 B.递减数列C.摆动数列 D.常数列9.已知是定义在上的函数,且对任意都有,若函数的图象关于点对称,且,则()A. B.C. D.10.若数列等差数列,a1=1,,则a5=()A. B.C. D.11.瑞士数学家欧拉(LeonhardEuler)1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上.后人称这条直线为欧拉线.已知△ABC的顶点,其欧拉线方程为,则顶点C的坐标是()A.() B.()C.() D.()12.已知是抛物线上的点,F是抛物线C的焦点,若,则()A.1011 B.2020C.2021 D.2022二、填空题:本题共4小题,每小题5分,共20分。13.已知,用割线逼近切线的方法可以求得___________.14.若不同的平面的一个法向量分别为,,则与的位置关系为___________.15.若x,y满足约束条件,则的最小值为___________.16.已知命题:方程表示焦点在轴上的椭圆;命题:方程表示双曲线.若为真,则实数的取值范围为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在所有棱长均为2的三棱柱ABC-A1B1C1中,∠B1BC=60°,求证:(1)AB1⊥BC;(2)A1C⊥平面AB1C1.18.(12分)如图,在正方体中,为棱的中点.求证:(1)平面;(2)求直线与平面所成角的大小.19.(12分)各项都为正数的数列的前项和为,且满足.(1)求数列的通项公式;(2)求;(3)设,数列的前项和为,求使成立的的最小值.20.(12分)已知抛物线C:()的焦点为F,原点O关于点F的对称点为Q,点关于点Q的对称点,也在抛物线C上(1)求p的值;(2)设直线l交抛物线C于不同两点A、B,直线、与抛物线C的另一个交点分别为M、N,,,且,求直线l的横截距的最大值.21.(12分)已知命题:“,”,命题:“,”,若“且”为真命题,求实数的取值范围22.(10分)设数列是公比为正整数的等比数列,满足,,设数列满足,.(1)求数列的通项公式;(2)求证:数列是等差数列,并求数列的通项公式;(3)已知数列,设,求数列的前项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由几何关系先求出一个正四面体的高,再结合锥体体积公式即可求解正八面体的体积.【详解】如图,设底面中心为,连接,由几何关系知,,则正八面体体积为.故选:C2、D【解析】连接、、,分析可知四边形为正方形,求出点的轨迹方程,分析可知线段所扫过图形为是夹在圆和圆的圆环,利用圆的面积公式可求得结果.【详解】连接、、,由圆的几何性质可知,,又因为且,故四边形为正方形,圆心,半径为,则,故点的轨迹方程为,所以,线段扫过的图形是夹在圆和圆的圆环,故在点运动的过程中,线段所扫过图形的面积为.故选:D.3、D【解析】根据空间向量垂直的坐标表示即可求解.【详解】.故选:D.4、D【解析】以正方体为载体说明即可.【详解】如下图所示的正方体:和是异面直线,,;和是异面直线,,与是异面直线.所以两直线与是异面直线,,则的位置关系是相交或异面.故选:D5、C【解析】由题意,直线的斜率为,利用点斜式即可得答案.【详解】解:因为直线与直线平行,所以直线的斜率为,又直线过点,所以直线的方程为,即,故选:C.6、D【解析】利用对立事件的概率求法求飞行目标被雷达发现的概率.【详解】由题设,飞行目标不被甲、乙发现的概率分别为、,所以飞行目标被雷达发现的概率为.故选:D7、A【解析】求出两圆的圆心及半径,求出圆心距,从而可得出结论.【详解】解:圆的圆心为,半径为,圆圆心为,半径为,则两圆圆心距,因为,所以两圆相交.故选:A.8、B【解析】分析的单调性,即可判断和选择.【详解】因为,显然随着的增大,是递增的,故是递减的,则数列是递减数列.故选:B.9、D【解析】令,代入可得,即得,再由函数的图象关于点对称,判断得函数的图象关于点对称,即,则化简可得,即函数的周期为,从而代入求解.【详解】令,得,即,所以,因为函数的图象关于点对称,所以函数的图象关于点对称,即,所以,即,可得,则,故选:D.第II卷(非选择题10、B【解析】令、可得等差数列的首项和第三项,即可求出第五项,从而求出.【详解】令得,令得,所以数列的公差为,所以,解得,故选:B.11、A【解析】根据题意,求得的外心,再根据外心的性质,以及重心的坐标,联立方程组,即可求得结果.【详解】因为,故的斜率,又的中点坐标为,故的垂直平分线的方程为,即,故△的外心坐标即为与的交点,即,不妨设点,则,即;又△的重心的坐标为,其满足,即,也即,将其代入,可得,,解得或,对应或,即或,因为与点重合,故舍去.故点的坐标为.故选:A.12、C【解析】结合向量坐标运算以及抛物线的定义求得正确答案.【详解】设,因为是抛物线上的点,F是抛物线C的焦点,所以,准线为:,因此,所以,即,由抛物线的定义可得,所以故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据导数的定义直接计算即可【详解】因为,所以,故答案为:14、平行【解析】根据题意得到,得出,即可得到平面与的位置关系.【详解】由题意,平面的一个法向量分别为,,可得,所以,所以,即平面与的位置关系为平行.故答案为:平行15、##【解析】作出可行域,进而根据z的几何意义求得答案.【详解】如图,作出可行域,由z的几何意义可知当过点B时取得最小值.联立,则最小值为.故答案为:.16、【解析】既然为真,那么就是为真,即p是假,并且q是真,根据椭圆和双曲线的定义即可解出。【详解】∵为真,∴p为假,q为真;考虑p为真的情况:解得……①;由于p为假,∴或;由于q为真,∴,即……②;由①和②得:;故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析.【解析】(1)通过计算·=0来证得AB1⊥BC.(2)通过证明A1C⊥AC1、A1C⊥AC1来证得A1C⊥平面AB1C1.【详解】证明:(1)易知<>=120°,=+,则·=(+)·=·+·=2×2×+2×2×=0.所以AB1⊥BC.(2)易知四边形AA1C1C为菱形,所以A1C⊥AC1.因为·=(-)·(-)=(-)·(--)=·-·-·-·+·+·=·-·-·+·=2×2×-4-2×2×+4=0,所以AB1⊥A1C,又AC1∩AB1=A,所以A1C⊥平面AB1C1.18、(1)证明见解析;(2).【解析】(1)连接,交于,连接,推导出,由此能证明平面.(2)以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出直线与平面所成角的大小.【详解】(1)证明:连接,交于,连接,∵在正方体中,是正方形,∴是中点,∵为棱的中点,∴,∵平面,平面,∴平面.(2)解:以为原点,为轴,为轴,为轴,建立空间直角坐标系,设正方体中棱长为2,则,,,,,,,设平面的法向量,则,取,得,设直线与平面所成角的大小为,则,∴,∴直线与平面所成角的大小为.【点睛】(1)求直线与平面所成的角的一般步骤:①找直线与平面所成的角,即通过找直线在平面上的射影来完成;②计算,要把直线与平面所成的角转化到一个三角形中求解(2)作二面角的平面角可以通过垂线法进行,在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角19、(1)(2)(3)【解析】(1)直接利用数列的递推关系式,结合等差数列的定义,即可求得数列的通项公式;(2)化简,结合裂项相消法求出数列的和;(3)利用分组法求得,结合,即可求得的最小值.【小问1详解】解:因为各项都为正数的数列的前项和为,且满足,当时,解得;当时,;两式相减可得,整理得(常数),故数列是以2为首项,2为公差的等差数列;所以.【小问2详解】解:由,可得,所以,所以.【小问3详解】解:由,可得,所以当为偶数时,,因为,且为偶数,所以的最小值为48;当为奇数时,,不存在最小的值,故当为48时,满足条件.20、(1);(2)最大横截距为.【解析】(1)首先写出的坐标,根据对称关系求出的坐标,带入即可求出.(2)设直线l的方程为,带入抛物线方程利用韦达定理,计算出直线l的横截距的表达式从而求出其最大值.【详解】(1)由题知,,故,代入C的方程得,∴;(2)设直线l的方程为,与抛物线C:联立得,由题知,可设方程两根为,,则,,(*)由得,∴,,又点M在抛物线C上,∴,化简得,由题知M,A为不同两点,故,,即,同理可得,∴,将(*)式代入得,即,将其代入解得,∴在时取得最大值,即直线l的最大横截距为.21、或【解析】先分别求出,为真时,的范围;再求交集,即可得出结果.【详解】若是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论