河北省普通高中2023-2024学年数学高二上期末达标检测试题含解析_第1页
河北省普通高中2023-2024学年数学高二上期末达标检测试题含解析_第2页
河北省普通高中2023-2024学年数学高二上期末达标检测试题含解析_第3页
河北省普通高中2023-2024学年数学高二上期末达标检测试题含解析_第4页
河北省普通高中2023-2024学年数学高二上期末达标检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省普通高中2023-2024学年数学高二上期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是抛物线上的点,F是抛物线C的焦点,若,则()A.1011 B.2020C.2021 D.20222.已知,且,则的最大值为()A. B.C. D.3.不等式的解集是()A. B.C.或 D.或4.下列关系中,正确的是()A. B.C. D.5.若某群体中的成员只用现金支付的概率为,既用现金支付也用非现金支付的概率为,则不用现金支付的概率为()A. B.C. D.6.中,三边长之比为,则为()A.锐角三角形 B.直角三角形C.钝角三角形 D.不存在这样的三角形7.在直三棱柱中,侧面是边长为的正方形,,,且,则异面直线与所成的角为()A. B.C. D.8.已知椭圆与椭圆,则下列结论正确的是()A.长轴长相等 B.短轴长相等C.焦距相等 D.离心率相等9.定义域为的函数满足,且的导函数,则满足的的集合为A. B.C. D.10.在等差数列中,,,则数列的公差为()A.1 B.2C.3 D.411.若关于x的方程有解,则实数的取值范围为()A. B.C. D.12.《九章算术》中,将四个面都为直角三角形的三棱锥称为鳖臑(nào).如图所示的三棱锥为一鳖臑,且平面,平面,若,,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足,,则数列的前n项和______14.在的展开式中,含项的系数为______(结果用数值表示)15.设与是定义在同一区间上的两个函数,若函数在上有两个不同的零点,则称与在上是“关联函数”.若与在上是“关联函数”,则实数的取值范围是____________.16.在数列中,满足,则________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知命题:“,”,命题:“,”,若“且”为真命题,求实数的取值范围18.(12分)已知椭圆C的中心在原点,焦点在x轴上,长轴长为4,且点在椭圆上(1)经过点M(1,)作一直线交椭圆于AB两点,若点M为线段AB的中点,求直线的斜率;(2)设椭圆C的上顶点为P,设不经过点P的直线与椭圆C交于C,D两点,且,求证:直线过定点19.(12分)设四边形为矩形,点为平面外一点,且平面,若,.(1)求与平面所成角的大小;(2)在边上是否存在一点,使得点到平面的距离为,若存在,求出的值,若不存在,请说明理由;(3)若点是的中点,在内确定一点,使的值最小,并求此时的值.20.(12分)已知等比数列的公比,且,的等差中项为,.(1)求数列的通项公式;(2)设,求数列的前项和.21.(12分)已知一张纸上画有半径为4圆O,在圆O内有一个定点A,且,折叠纸片,使圆上某一点刚好与A点重合,这样的每一种折法,都留下一条直线折痕,当取遍圆上所有点时,所有折痕与的交点形成的曲线记为C.(1)求曲线C的焦点在轴上的标准方程;(2)过曲线C的右焦点(左焦点为)的直线l与曲线C交于不同的两点M,N,记的面积为S,试求S的取值范围.22.(10分)内角A,B,C的对边分别为a,b,c,已知(1)求B;(2)若,且是锐角三角形,求c的值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】结合向量坐标运算以及抛物线的定义求得正确答案.【详解】设,因为是抛物线上的点,F是抛物线C的焦点,所以,准线为:,因此,所以,即,由抛物线的定义可得,所以故选:C2、A【解析】由基本不等式直接求解即可得到结果.【详解】由基本不等式知;(当且仅当时取等号),的最大值为.故选:A.3、A【解析】确定对应二次方程的解,根据三个二次的关系写出不等式的解集【详解】,即为,故选:A4、B【解析】根据对数函数的性质判断A,根据指数函数的性质判断B,根据正弦函数的性质及诱导公式判断C,根据余弦函数的性质及诱导公式判断D;【详解】解:对于A:因为,,,故A错误;对于B:因为在定义域上单调递减,因为,所以,又,,因为在上单调递增,所以,所以,所以,故B正确;对于C:因为在上单调递减,因为,所以,又,所以,故C错误;对于D:因为在上单调递减,又,所以,又,所以,故D错误;故选:B5、A【解析】利用对立事件概率公式可求得所求事件的概率.【详解】由对立事件的概率公式可知,该群体中的成员不用现金支付的概率为.故选:A.6、C【解析】利用余弦定理可求得最大角的余弦值小于零,由此可知最大角为钝角.【详解】设三边分别为,,,中的最大角为,,为钝角,为钝角三角形.故选:C.7、C【解析】分析得出,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可求得异面直线与所成的角.【详解】由题意可知,,因为,,则,,因为平面,以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则点、、、,,,,因此,异面直线与所成的角为.故选:C.8、C【解析】利用,可得且,即可得出结论【详解】∵,且,椭圆与椭圆的关系是有相等的焦距故选:C9、B【解析】利用2f(x)<x+1构造函数g(x)=2f(x)-x-1,进而可得g′(x)=2f′(x)-1>0.得出g(x)的单调性结合g(1)=0即可解出【详解】令g(x)=2f(x)-x-1.因为f′(x)>,所以g′(x)=2f′(x)-1>0.所以g(x)单调增函数因为f(1)=1,所以g(1)=2f(1)-1-1=0.所以当x<1时,g(x)<0,即2f(x)<x+1.故选B.【点睛】本题主要考察导数的运算以及构造函数利用其单调性解不等式.属于中档题10、B【解析】将已知条件转化为的形式,由此求得.【详解】在等差数列中,设公差为d,由,,得,解得.故选:B11、C【解析】将对数方程化为指数方程,用x表示出a,利用基本不等式即可求a的范围【详解】,,当且仅当时取等号,故故选:C12、A【解析】根据平面,平面求解.【详解】因为平面,平面,所以,又,,,所以,所以,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求出,利用裂项相消法求和.【详解】因为数列满足,,所以数列为公差d=2的等差数列,所以,所以所以.故答案为:.14、12【解析】通过二次展开式就可以得到.【详解】的展开式中含含项的系数为故答案为:1215、【解析】令得,设函数,则直线与函数在区间上的图象有两个交点,利用导数分析函数的单调性与极值,利用数形结合思想可求得实数的取值范围.【详解】令得,设函数,则直线与函数在区间上的图象有两个交点,,令,可得,列表如下:极小值,,如图所示:由图可知,当时,直线与函数在区间上的图象有两个交点,因此,实数的取值范围是.故答案为:.16、15【解析】根据递推公式,依次代入即可求解.【详解】数列满足,当时,可得,当时,可得,当时,可得,故答案为:15.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、或【解析】先分别求出,为真时,的范围;再求交集,即可得出结果.【详解】若是真命题.则对任意恒成立,∴;若为真命题,则方程有实根,∴,解得或,由题意,真也真,∴或即实数的取值范围是或.18、(1);(2)证明见解析.【解析】(1)设椭圆的方程为代入点的坐标求出椭圆的方程,再利用点差法求解;(2)由题得直线的斜率存在,设直线的方程为,联立直线和椭圆的方程得韦达定理,根据和韦达定理得到,即得证.【小问1详解】解:由题设椭圆的方程为因为椭圆经过点,所以所以椭圆的方程为.设,所以,所以,由题得,所以,所以,所以,所以直线的斜率为.【小问2详解】解:由题得当直线的斜率不存在时,不符合题意;当直线的斜率存在时,设直线的方程为,联立方程组y=kx+nx24所以,解得①,设,,,,则②,因为,则,,,又,,所以③,由②③可得(舍或满足条件①,此时直线的方程为,故直线过定点19、(1)(2)存在,距离为(3)位置答案见解析,【解析】(1)利用线面垂直的判定定理证明平面,然后由线面角的定义得到PC与平面PAD所成的角为,在中,由边角关系求解即可.(2)假设BC边上存在一点G满足题设条件,不放设,则,再根据得,进而得答案.(3)延长CB到C',使得C'B=CB,连结C'E,过E作于E',利用三点共线,两线段和最小,得到,过H作于H',连结HB,在中,求解HB即可.【小问1详解】解:因为平面,平面,所以,又因为底面是矩形,所以,又平面,所以平面,故与平面所成的角为,因为,,所以故直线PC与平面PAD所成角的大小为;【小问2详解】解:假设BC边上存在一点G满足题设条件,不妨设,则因为平面,到平面的距离为所以,即因为代入数据解得,即,故存在点G,当时,使得点D到平面PAG的距离为;【小问3详解】解:延长CB到C',使得C'B=CB,连结C'E,过E作于E',则,当且仅当三点共线时等号成立,故,过H作于H',连结HB,在中,,,所以.20、(1);(2)【解析】(1)将题目的条件写成的形式并求解,写出等比等比数列通项公式;(2)利用错位相减法求和.小问1详解】由题意可得,,∴,∵,∴,∴数列的通项公式为.【小问2详解】,∴①,②,①-②可得,∴.21、(1);(2)﹒【解析】(1)根据题意,作出图像,可得,由此可知M的轨迹C为以O、A为焦点的椭圆;(2)分为l斜率存在和不存在时讨论,斜率存在时,直线方程和椭圆方程联立,用韦达定理表示的面积,根据变量范围可求面积的最大值﹒【小问1详解】以OA中点G坐标原点,OA所在直线为x轴建立平面直角坐标系,如图:∴可知,,设折痕与和分别交于M,N两点,则MN垂直平分,∴,又∵,∴,∴M的轨迹是以O,A为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论