河南省豫北名校联盟2023-2024学年高二数学第一学期期末联考试题含解析_第1页
河南省豫北名校联盟2023-2024学年高二数学第一学期期末联考试题含解析_第2页
河南省豫北名校联盟2023-2024学年高二数学第一学期期末联考试题含解析_第3页
河南省豫北名校联盟2023-2024学年高二数学第一学期期末联考试题含解析_第4页
河南省豫北名校联盟2023-2024学年高二数学第一学期期末联考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省豫北名校联盟2023-2024学年高二数学第一学期期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如果命题为真命题,为假命题,那么()A.命题,都是真命题 B.命题,都是假命题C.命题,至少有一个是真命题 D.命题,只有一个是真命题2.已知等比数列的前项和为,若公比,则=()A. B.C. D.3.已知集合A={x|-2≤x≤0},B={-2,-1,0,1},则A∩B=()A.{-2,-1,0,1} B.{-1,0,1}C.{-2,-1} D.{-2,-1,0}4.直线分别与轴,轴交于A,B两点,点在圆上,则面积的取值范围是()A B.C. D.5.一动圆与圆外切,而与圆内切,那么动圆的圆心的轨迹是()A.椭圆 B.双曲线C.抛物线 D.双曲线的一支6.已知随机变量,,则的值为()A.0.24 B.0.26C.0.68 D.0.767.已知直线,椭圆.若直线l与椭圆C交于A,B两点,则线段AB的中点的坐标为()A. B.C. D.8.过圆外一点引圆的两条切线,则经过两切点的直线方程是A. B.C. D.9.抛物线的准线方程是A.x=1 B.x=-1C. D.10.函数极小值为()A. B.C. D.11.已知数列中,,(),则()A. B.C. D.212.矿山爆破时,在爆破点处炸开的矿石的运动轨迹可看作是不同的抛物线,根据地质、炸药等因素可以算出这些抛物线的范围,这个范围的边界可以看作一条抛物线,叫“安全抛物线”,如图所示.已知某次矿山爆破时的安全抛物线的焦点为,则这次爆破时,矿石落点的最远处到点的距离为()A. B.2C. D.二、填空题:本题共4小题,每小题5分,共20分。13.直线过点,且原点到直线l的距离为,则直线方程是______14.已知直线与垂直,则m的值为______15.如图,四边形为直角梯形,且,为正方形,且平面平面,,,,则______,直线与平面所成角的正弦值为______16.若在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列,现将数列进行构造,第次得到数列;第次得到数列;依次构造,第次得到数列;记,则(1)___________,(2)___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数f(x)+alnx,实数a>0(1)当a=2时,求函数f(x)在x=1处的切线方程;(2)讨论函数f(x)在区间(0,10)上的单调性和极值情况;(3)若存在x∈(0,+∞),使得关于x的不等式f(x)<2+a2x成立,求实数a的取值范围18.(12分)已知直线经过点,,直线经过点,且.(1)分别求直线,的方程;(2)设直线与直线的交点为,求外接圆的方程.19.(12分)已知是数列的前n项和,且.(1)求数列的通项公式;(2)若,求的前n项和.20.(12分)已知等差数列的前项和为,满足,.(1)求数列的通项公式与前项和;(2)求的值.21.(12分)某厂有4台大型机器,在一个月中,一台机器至多出现1次故障,出现故障时需1名工人进行维修,且每台机器是否出现故障是相互独立的,每台机器出现故障的概率为(1)若出现故障的机器台数为X,求X的分布列;(2)已知一名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资,每台机器不出现故障或出现故障时能及时维修,都产生5万元的利润,否则将不产生利润.若该厂在雇佣维修工人时,要保证在任何时刻多台机器同时出现故障能及时进行维修的概率不小于90%,雇佣几名工人使该厂每月获利最大?22.(10分)已知函数.(1)证明:;(2)若函数有两个零点,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由命题为真命题,可判断二者至少有一个为真命题,由为假命题,可判断二者至少有一个为假命题,由此可得答案.【详解】命题为真命题,说明二者至少有一个为真命题,为假命题,说明二者至少有一个为假命题,综合上述,可知命题,只有一个是真命题,故选:D2、A【解析】根据题意,由等比数列的通项公式与前项和公式直接计算即可.【详解】由已知可得.故选:A.3、D【解析】根据集合交集的运算法则计算即可.【详解】∵A={x|-2≤x≤0},B={-2,-1,0,1},则A∩B={-2,-1,0}.故选:D.4、A【解析】把求面积转化为求底边和底边上的高,高就是圆上点到直线的距离.【详解】与x,y轴的交点,分别为,,点在圆,即上,所以,圆心到直线距离为,所以面积的最小值为,最大值为.故选:A5、A【解析】依据定义法去求动圆的圆心的轨迹即可解决.【详解】设动圆的半径为r,又圆半径为1,圆半径为8,则,,可得,又则动圆的圆心的轨迹是以为焦点长轴长为9的椭圆.故选:A6、A【解析】根据给定条件利用正态分布的对称性计算作答.【详解】因随机变,,有P(ξ<4)=P(ξ≤4)=0.76,由正态分布的对称性得:,所以的值为0.24.故选:A7、B【解析】联立直线方程与椭圆方程,消y得到关于x的一元二次方程,根据韦达定理可得,进而得出中点的横坐标,代入直线方程求出中点的纵坐标即可.【详解】由题意知,,消去y,得,则,,所以A、B两点中点的横坐标为:,所以中点的纵坐标为:,即线段AB的中点的坐标为.故选:B8、A【解析】过圆外一点,引圆的两条切线,则经过两切点的直线方程为,故选9、C【解析】先把抛物线方程整理成标准方程,进而求得p,再根据抛物线性质得出准线方程【详解】解:整理抛物线方程得,∴p=∵抛物线方程开口向上,∴准线方程是y=﹣故答案为C【点睛】本题主要考查抛物线的标准方程和简单性质.属基础题10、A【解析】利用导数分析函数的单调性,可求得该函数的极小值.【详解】对函数求导得,令,可得或,列表如下:减极小值增极大值减所以,函数的极小值为.故选:A.11、A【解析】由已知条件求出,可得数是以3为周期的周期数列,从而可得,进而可求得答案【详解】因为,(),所以,所以数列的周期为3,,故选:A12、D【解析】根据给定条件求出抛物线的顶点,结合抛物线的性质求出p值即可计算作答.【详解】依题意,抛物线的顶点坐标为,则抛物线的顶点到焦点的距离为,p>0,解得,于是得抛物线的方程为,由得,,即抛物线与轴的交点坐标为,因此,,所以矿石落点的最远处到点的距离为.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】直线斜率不存在不满足题意,即设直线的点斜式方程,再利用点到直线的距离公式,求出的值,即可求出直线方程.【详解】①当直线斜率不存在时,显然不满足题意.②当直线斜率存在时,设直线为.原点到直线l的距离为,即直线方程为.故答案为:.14、0或-9##-9或0【解析】根据给定条件利用两直线互相垂直的性质列式计算即得.【详解】因直线与垂直,则有,解得或,所以m的值为0或-9.故答案为:0或-915、①..②..【解析】以点为坐标原点,,,所在直线分别为轴,轴,轴建立空间直角坐标系,根据空间向量的线性运算求得向量的坐标,由此求得,由线面角的空间向量求解方法求得答案.【详解】解:以点为坐标原点,,,所在直线分别为轴,轴,轴建立空间直角坐标系(如下图所示)由题意可知,,,因为,,所以,故设平面的法向量为,则,令,得因为,所以直线与平面所成角的正弦值为故答案为:;.16、①.②.【解析】根据题意得到,再利用叠加法求解即可.【详解】由题知:,,,所以,,,……,,所以,,……,,即,所以.故答案为:;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)4x﹣y+2=0(2)答案见解析(3)(0,2)∪(2,+∞)【解析】(1)求出f(x)的导数,可得切线的斜率和切点坐标,由直线的点斜式方程可得所求切线的方程;(2)求得f(x)的导数,分a、0<a两种情况讨论求出答案即可;(3)由题意可得存在x∈(0,+∞),使得不等式成立,令,x>0,求得其最小值,再把最小值看成关于的函数,结合其单调性和极值可得答案【小问1详解】函数f(x)的定义域为(0,+∞),当a=2时,,导数为4,可得f(x)在x=1处的切线的斜率为4,又f(1)=6,所以f(x)在x=1处的切线的方程为y﹣6=4(x﹣1),即4x﹣y+2=0;【小问2详解】f(x)的导数为f′(x)a2,x>0,令f′(x)=0,可得x(舍去),①当010,即a时,当0<x时,f′(x)<0,f(x)递减;当x<10时,f′(x)>0,f(x)递增所以f(x)在(0,)上递减,在(,10)上递增,f(x)在x处取得极小值,无极大值;②当10即0<a时,f′(x)<0,f(x)在(0,10)上递减,无极值综上可得,当a时,f(x)在(0,)单调递减,在(,10)上单调递增,f(x)在x时取得极小值,无极大值当0<a时,f(x)在区间(0,10)上递减,无极值;【小问3详解】存在x∈(0,+∞),使得不等式f(x)<2+a2x成立等价为存在x∈(0,+∞),使得不等式alnx﹣2<0成立令,x>0,g′(x),因为a>0,可得当0<x时,g′(x)<0,g(x)递减;当x时,g′(x)>0,g(x)递增,所以当x时,g(x)取得极小值,且为最小值,由题意可得,令,,令h′(x)=0,可得x=2,当x∈(0,2)时,h′(x)>0,h(x)递增;当x∈(2,+∞)时,h′(x)<0,h(x)递减所以当x=2时,h(x)取得极大值,且为最大值h(2)=0所以满足的实数a的取值范围是(0,2)∪(2,+∞)18、(1);(2).【解析】(1)根据两点式即可求出直线l1的方程,根据直线垂直的关系即可求l2的方程;(2)先求出C点坐标,通过三角形的长度关系知道三角形是以AC为斜边长的直角三角形,故AC的中点即为外心,AC即为直径.解析:(1)∵直线经过点,,∴,设直线的方程为,∴,∴.(2),即:,∴,的中点为,∴的外接圆的圆心为,半径为,∴外接圆的方程为:.点睛:这个题目考查的是已知两直线位置关系求参的问题,还考查了三角形外接圆的问题.对于三角形为外接圆,圆心就是各个边的中垂线的交点,钝角三角形外心在三角形外侧,锐角三角形圆心在三角形内部,直角三角形圆心在直角三角形斜边的中点19、(1)(2)【解析】(1)当时,化简得到,进而得到数列的通项公式;(2)由(1)得到,结合裂项法,即可求解.【小问1详解】解:由题意,数列的前n项和,且,当时,,当时,,满足上式,所以数列的通项公式为.【小问2详解】解:由,可得,所以.20、(1),;(2).【解析】(1)设出等差数列的公差,借助前项和公式列式计算作答.(2)由(1)的结论借助裂项相消去求解作答.【小问1详解】设等差数列的公差为,因,,则,解得,于是得,,所以数列的通项公式为,前项和.【小问2详解】由(1)知,,所以.21、(1)答案见解析(2)雇佣3名【解析】(1)设出现故障的机器台数为X,由题意知,即可由二项分布求解;(2)设该厂雇佣n名工人,n可取0、1、2、3、4,先求出保证在任何时刻多台机器同时出现故障能及时进行维修的概率不小于90%需要至少3人,再分别计算3人,4人时的获利即可得解.【小问1详解】每台机器运行是否出现故障看作一次实验,在一次试验中,机器出现故障的概率为,4台机器相当于4次独立试验设出现故障的机器台数为X,则,,,,,,则X的分布列为:X01234P【小问2详解】设该厂雇佣n名工人,n可取0、1、2、3、4,设“在任何时刻多台机器同时出现故障能及时进行维修”的概率为,则:n01234P1∵,∴至少要3名工人,才能保证在任何时刻多台机器同时出现故障时能及时进行维修的概率不小于90%当该厂雇佣3名工人时,设该厂获利为Y万元,则Y的所有可能取值为17,12,,,∴Y的分布列为:Y1712P∴,∴该厂获利的均值为16.9万元当该厂雇佣4名工人时,4台机器在任何时刻同时出现故障时能及时进行维修的概率为100%,该厂获利的均值为万元∴若该厂要保证在任何时刻多台机器同时出现故障能及时进行维修的概率不小于90%时,雇

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论