




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
整式的加减
练习一(课前测评)
1.运用有理数的运算律计算:
100×2+252×2=
100×(-2)+252×(-2)=
有理数可以进行加减计算,那么整式能否可以加减运算呢?怎样化简呢?(100+252)×2=704(100+252)×(-2)=-704问题
青藏铁路线上,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,在西宁到拉萨路段,列车通过非冻土地段所需时间是通过冻土地段所需时间的2.1倍,如果通过冻土地段需要t小时,则这段铁路的全长是多少?(单位:千米)解:100t+120×2.1t这段铁路的全长是:即100t+252t
2.类比数的运算,化简100t+252t,并说明其中的道理。100t+252t=352
t解:原式=(100+252)×2=352×2=704100×2+252×2原式
练习二3.填空(1)100t-252t=()t(2)3x2+2x2=()x2(3)3ab2-4ab2=()ab2
100t-252t=3x2+2x23ab2-4ab2根据逆用乘法对加法的分配律可得:
上述运算有什么共同特点,你能从中得出什么规律?这就是说,上面的三个多项式都可以合并为一个单项式。讨论:具备什么特点的多项式可以合并呢?探讨:(100-252)t=-152t=(3+2)x2=5x2=(3-4)ab2=-ab2观察=(100+252)t返回下一张上一张退出1.所含字母相同。2.相同字母的指数也相同。同时满足1、2的项叫同类项。几个常数项也是同类项。思考:4.判断下列各组中的两项是否是同类项:(1)-5ab3与3a3b()(2)3xy与3x()(3)-5m2n3与2n3m2()(4)53与35()(5)x3与53()是否是否否
因为多项式中的字母表示的是数,所以我们也可以运用交换律、结合律、分配律把多项式中的同类项进行合并。
知识的升华1返回下一张上一张退出例如:4x2+2x+7+3x-8x2-2(找出多项式中的同类项)=4x2-8x2+2x+3x+7-2(交换律)=(4x2-8x2)+(2x+3x)+(7-2)(结合律)=(4-8)x2+(2+3)x+(7-2)(分配律)=-4x2+5x+5把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数、字母以及字母的指数与合并前各同类项的系数、字母及字母的指数有什么联系?探讨:返回下一张上一张退出合并同类项法则:
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。注意:
1.若两个同类项的系数互为相反数,则两项的和等于零,如:-3ab2+3ab2=(-3+3)ab2=0×ab2=0。2.多项式中只有同类项才能合并,不是同类项不能合并。3.通常我们把一个多项式的各项按照某个字母的指数从大到小(降幂)或者从小到大(升幂)的顺序排列,如:-4x2+5x+5或写5+5x-4x2。例1:合并下列各式的同类项:(2)-3x2y+2x2y+3xy2-2xy2解:=(-3+2)x2y+(3-2)xy2=-x2y+xy2(3)4a2+3b2+2ab-4a2-4b2=(4a2-4a2)+(3b2-4b2)+2ab=(4-4)a2+(3-4)b2+2ab=-b2+2ab做一做:解:(1)2x2-5x+x2+4x-3x2-2=(2+1-3)x2+(-5+4)x-2=-x-2返回下一张上一张退出随堂练习:1.下列各对不是同类项的是()A-3x2y与2x2yB-2xy2与
3x2yC-5x2y与3yx2D3mn2与2mn22.合并同类项正确的是()A4a+b=5abB6xy2-6y2x=0C6x2-4x2=2D3x2+2x3=5x5BB3.课本第66页练习第1题
例3.(1)水库中水位第一天连续下降了a小时,每小时平均下降2cm;第二天连续上升了a小时,每小时平均上升0.5cm,这两天水位总的变化情况如何?(2)某商店原有5袋大米,每袋大米为x千克,上午卖出3袋,下午又购进同样包装的大米4袋,进货后这个商店有大米多少千克?
解:(1)把下降的水位变化量记为负,上升的水位变化量量记为正,第一天水位的变化量为,第二天水位的变化量为.两天水位的总变化量为
-2a+0.5a=(-2+0.5)a=-1.5a(cm)这两天水位总的变化情况为下降了1.5acm
(2)把进货的数量记为正,售出的数量记为负,进货后这个商店共有大米5x-3x+4x=(5-3+4)x=6x(千克)-2acm0.5acm本节课你学到了什么?小结1.什么叫做同类项?请举例说明.2.什么叫做合并同类项?怎样合并同类项?3.对于求多项式的值,不要急于代入,应先观察多项式,看其中有没有同类项,若有,要先合并同类项使之变得简单,而后代入求值。作业:课本第71页习题2.2第1、7、10题谢谢!再见!有理数的混合运算旧识回顾1、计算:(1)(2)(3)2、计算:(1)(2)小学时加减乘除混合运算顺序是?先乘除后加减,有括号时先算括号里面的。同级的运算要从左至右。1、计算:(1)(2)2、计算下列各式:(1)(2)(3)(4)3、找茬:你认为下面的解法正确吗?若不正确,你能发现下面解法问题出在哪里吗?正确的解法为:加减乘除混合运算法则
1.先算乘除;2.再算加减;3.有括号时先算括号(先小括号,再中括号,最后是大括号)4.同级运算,按照从左到右.注:对于混合运算中有除法时,可以运用除法法则2先将除法变为乘法;可以适当运用运算律使计算简便。4、计算:练习思维拓展计算下列各式:有理数的混合运算2在算式中,含有加、减、乘除及其乘方等多种运算,这样的运算叫做有理数的混合运算.怎样进行有理数的运算呢?按什么运算顺序进行呢?通常把六种基本的代数运算分成三级.加与减是第一级运算,乘与除是第二级运算,乘方与开方是第三级运算.运算顺序的规定详细地讲是:先算高级运算,再算低级的运算;同级运算在一起,按从左到右的顺序运算;如果有括号,先算小括号内的,再算中括号,最后算大括号.
简单地说,有理数混合运算应按下面的运算顺序进行:
先算乘方,再算乘除,最后算加减;同级运算,按照从左至右的顺序进行;
如果有括号,就先算括号里面的.例1(1)2÷﹙½-2﹚与2÷½-2有什么不同?
(2)﹙-2﹚÷﹙2×3﹚与﹙-2﹚÷2×3有什么不同?例1:计算下列各题:(1)分析:算式里含有乘方和乘除运算,所以应先算乘方,再算乘除。解:原式
点评:在乘除运算中,一般把小数化成分数,以便约分。(2)分析:此题是含有乘方、乘、除、加减法的混合运算,可将算式分成两段。“-”号前边的部分为第一段,“-”号后边的部分为第二段,运算时,第一步,应将第一段的除法变为乘法和计算第二段中的乘方;第二步,计算乘法;第三步,计算加减法,得出最后结果。解:原式===(3)
分析:此题应先算乘方,再算加减。解:(
23)
22
(
3)3
32
8
4
27
9
24.注意:(4)分析:先算括号里面的再算括号外面的。解:原式=
=(5)思路1:先算括号里面的加减法,再算括号外面的除法。解法1:原式
7思路2:先将除法化为乘法,再用乘法分配律。解法2:原式=
=
=
=
7点评:解法2比解法1简单,是因为在解法2中根据题目特点,使用了乘法分配律。在有理数的混合运算中,恰当、合理地使用运算律,可以使运算简捷,从而减少错误,提高运算的正确率。
例2
计算下列各题:(1)
分析:中括号中各加数化成带分数后,其分子都是4的倍数,所以本题先把除法化乘法后,用乘法分配律简单。
(2) 先算乘方和把除法变乘法: 原式= 观察式子特点发现,小括号内各分数的分子都是10的因数,从而想到将小括号和因数用结合律和分配律:
原式====(3)解:原式======点评:本题中逆用乘法分配律提取,使运算简便。(4)[53-4×(-5)2-(-1)10]÷(-24-24+24)
分析:在本题中53可以看做5×52,(-5)2=52,对于 53-4×(-5)2可变形5×52-4×52,然后运用乘法 分配律.-24与24是互为相反数,所以-24+24=0.
解:[53-4×(-5)2-(-1)10]÷(-24-24+24)
=[5×52-4×52-1]÷(-24+24-24)
=[52(5-4)-1]÷(-24)
=(25×1-1)÷(-24)
=24÷(-24)
=
-1.
注意:①53=5×52;②5×52-4×52
=52(5-4)(运用乘法分配律)
=25×1
=25.以上主要学习了有理数加、减、乘、除、乘方的混合运算.进行有理数混合运算的关键是熟练掌握加、减、乘、除、乘方的运算法则、运算律及运算顺序,比较复杂的混合运算,一般可先根据题中的加减运算,把算式分成几段.计算时,先从每段的乘方开始,按顺序运算,有括号先算括号里的.同时,要注意灵活运用运算律简化运算。
有理数的混合运算旧识回顾1、计算:(1)(2)(3)2、计算:(1)(2)小学时加减乘除混合运算顺序是?先乘除后加减,有括号时先算括号里面的。同级的运算要从左至右。1、计算:(1)(2)2、计算下列各式:(1)(2)(3)(4)3、找茬:你认为下面的解法正确吗?若不正确,你能发现下面解法问题出在哪里吗?正确的解法为:加减乘除混合运算法则
1.先算乘除;2.再算加减;3.有括号时先算括号(先小括号,再中括号,最后是大括号)4.同级运算,按照从左到右.注:对于混合运算中有除法时,可以运用除法法则2先将除法变为乘法;可以适当运用运算律使计算简便。4、计算:练习思维拓展计算下列各式:有理数的混合运算2在算式中,含有加、减、乘除及其乘方等多种运算,这样的运算叫做有理数的混合运算.怎样进行有理数的运算呢?按什么运算顺序进行呢?通常把六种基本的代数运算分成三级.加与减是第一级运算,乘与除是第二级运算,乘方与开方是第三级运算.运算顺序的规定详细地讲是:先算高级运算,再算低级的运算;同级运算在一起,按从左到右的顺序运算;如果有括号,先算小括号内的,再算中括号,最后算大括号.
简单地说,有理数混合运算应按下面的运算顺序进行:
先算乘方,再算乘除,最后算加减;同级运算,按照从左至右的顺序进行;
如果有括号,就先算括号里面的.例1(1)2÷﹙½-2﹚与2÷½-2有什么不同?
(2)﹙-2﹚÷﹙2×3﹚与﹙-2﹚÷2×3有什么不同?例1:计算下列各题:(1)分析:算式里含有乘方和乘除运算,所以应先算乘方,再算乘除。解:原式
点评:在乘除运算中,一般把小数化成分数,以便约分。(2)分析:此题是含有乘方、乘、除、加减法的混合运算,可将算式分成两段。“-”号前边的部分为第一段,“-”号后边的部分为第二段,运算时,第一步,应将第一段的除法变为乘法和计算第二段中的乘方;第二步,计算乘法;第三步,计算加减法,得出最后结果。解:原式===(3)
分析:此题应先算乘方,再算加减。解:(
23)
22
(
3)3
32
8
4
27
9
24.注意:(4)分析:先算括号里面的再算括号外面的。解:原式=
=(5)思路1:先算括号里面的加减法,再算括号外面的除法。解法1:原式
7思路2:先将除法化为乘法,再用乘法分配律。解法2:原式=
=
=
=
7点评:解法2比解法1简单,是因为在解法2中根据题目特点,使用了乘法分配律。在有理数的混合运算中,恰当、合理地使用运算律,可以使运算简捷,从而减少错误,提高运算的正确率。
例2
计算下列各题:(1)
分析:中括号中各加数化成带分数后,其分子都是4的倍数,所以本题先把除法化乘法后,用乘法分配律简单。
(2) 先算乘方和把除法变乘法: 原式= 观察式子特点发现,小括号内各分数的分子都是10的因数,从而想到将小括号和因数用结合律和分配律:
原式====(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025深圳合同协议书范本
- 小学生安全教育演讲稿
- 2025【建筑外墙保温工程施工专业分包合同】 建设工程施工合同模板
- 2025陶瓷砖供销合同模板
- 2025年附条件合同的法律特性
- 卫生学校学历教育中心
- 心脏病产后的护理
- 2025年华南地区室内环境质量保证合同(适用于建筑材料交易)
- 初中生物神经系统与神经调节第2课时 2024-2025学年七年级生物下册(北师大版2024)
- 2025技术转让与合作合同
- 儿童抑郁量表CDI
- 马克思主义新闻观十二讲之第八讲坚持新闻真实原则课件
- 工艺管道伴热管施工技术方案
- 各层次养老机构定价方法及案例
- 二方审核计划
- 优秀病例演讲比赛PPT
- 吉林省矿产资源概况及分布
- 最新肺结核诊断和治疗指南
- 公司员工基本礼仪培训ppt完整版课件
- 工程项目综合应急预案(通用版)
- 半桥LLC谐振变换器设计与仿真
评论
0/150
提交评论