江苏溧阳市2023-2024学年高二上数学期末复习检测试题含解析_第1页
江苏溧阳市2023-2024学年高二上数学期末复习检测试题含解析_第2页
江苏溧阳市2023-2024学年高二上数学期末复习检测试题含解析_第3页
江苏溧阳市2023-2024学年高二上数学期末复习检测试题含解析_第4页
江苏溧阳市2023-2024学年高二上数学期末复习检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏溧阳市2023-2024学年高二上数学期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线过点,点为平面直角坐标系平面内一点,若线段的垂直平分线过抛物线的焦点,则点与原点间的距离的最小值为()A. B.C. D.2.在等比数列中,,,则等于()A. B.5C. D.93.已知f(x)是定义在R上的偶函数,当时,,且f(-1)=0,则不等式的解集是()A. B.C. D.4.已知圆的圆心在轴上,半径为2,且与直线相切,则圆的方程为A. B.或C. D.或5.矿山爆破时,在爆破点处炸开的矿石的运动轨迹可看作是不同的抛物线,根据地质、炸药等因素可以算出这些抛物线的范围,这个范围的边界可以看作一条抛物线,叫“安全抛物线”,如图所示.已知某次矿山爆破时的安全抛物线的焦点为,则这次爆破时,矿石落点的最远处到点的距离为()A. B.2C. D.6.椭圆离心率是()A. B.C. D.7.已知直线与直线垂直,则()A. B.C. D.38.在三棱锥中,,,,若,,则()A. B.C. D.9.椭圆的焦点为、,上顶点为,若,则()A B.C. D.10.命题“,”的否定为()A., B.,C., D.,11.过点作圆的切线,则切线的方程为()A. B.C.或 D.或12.若且,则下列选项中正确的是()A B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点P是抛物线上的一个动点,则点P到点M(0,2)的距离与点P到该抛物线准线的距离之和的最小值为______________14.函数的图象在点P()处的切线方程是,则_____15.已知等差数列满足,请写出一个符合条件的通项公式______16.已知是椭圆的两个焦点,点M在C上,则的最大值为_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)判断的单调性.(2)证明:.18.(12分)在中,角A,B,C所对的边分别为a,b,c,且,,.(1)求角B;(2)求a,c的值及的面积.19.(12分)在数列中,,且,(1)求的通项公式;(2)求的前n项和的最大值20.(12分)已知圆C的方程为.(1)直线l1过点P(3,1),倾斜角为45°,且与圆C交于A,B两点,求AB的长;(2)求过点P(3,1)且与圆C相切的直线l2的方程.21.(12分)如图,在四棱锥中P﹣ABCD中,底面ABCD是边长为2的正方形,BC⊥平面PAB,PA⊥AB,PA=2(1)求证:PA⊥平面ABCD;(2)求平面PAD与平面PBC所成角的余弦值22.(10分)奋发学习小组共有3名学生,在某次探究活动中,他们每人上交了1份作业,现各自从这3份作业中随机地取出了一份作业.(1)每个学生恰好取到自己作业的概率是多少?(2)每个学生不都取到自己作业的概率是多少?(3)每个学生取到的都不是自己作业的概率是多少?

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】将点的坐标代入抛物线的方程,求出的值,可求得抛物线的方程,求出的坐标,分析可知点的轨迹是以点为圆心,半径为的圆,利用圆的几何性质可求得点与原点间的距离的最小值.【详解】将点的坐标代入抛物线的方程得,可得,故抛物线的方程为,易知点,由中垂线的性质可得,则点的轨迹是以点为圆心,半径为的圆,故点的轨迹方程为,如下图所示:由图可知,当点、、三点共线且在线段上时,取最小值,且.故选:B.2、D【解析】由等比数列的项求公比,进而求即可.【详解】由题设,,∴故选:D3、D【解析】根据题意可知,当时,,即函数在上单调递增,再结合函数f(x)的奇偶性得到函数的奇偶性,并根据奇偶性得到单调性,进而解得答案.【详解】由题意,当时,,则函数在上单调递增,而f(x)是定义在R上的偶函数,容易判断是定义在上的奇函数,于是在上单调递增,而f(-1)=0,则.于是当时,.故选:D.4、D【解析】设圆心坐标,由点到直线距离公式可得或,进而求得答案【详解】设圆心坐标,因为圆与直线相切,所以由点到直线的距离公式可得,解得或.因此圆的方程为或.【点睛】本题考查利用直线与圆的位置关系求圆的方程,属于一般题5、D【解析】根据给定条件求出抛物线的顶点,结合抛物线的性质求出p值即可计算作答.【详解】依题意,抛物线的顶点坐标为,则抛物线的顶点到焦点的距离为,p>0,解得,于是得抛物线的方程为,由得,,即抛物线与轴的交点坐标为,因此,,所以矿石落点的最远处到点的距离为.故选:D6、C【解析】将方程转化为椭圆的标准方程,求得a,c,再由离心率公式求得答案.【详解】解:由得,所以,则,所以椭圆的离心率,故选:C.7、D【解析】先分别求出两条直线的斜率,再利用两直线垂直斜率之积为,即可求出.【详解】由已知得直线与直线的斜率分别为、,∵直线与直线垂直,∴,解得,故选:.8、B【解析】根据空间向量的基本定理及向量的运算法则计算即可得出结果.【详解】连接,因为,所以,因为,所以,所以,故选:B9、C【解析】分析出为等边三角形,可得出,进而可得出关于的等式,即可解得的值.【详解】在椭圆中,,,,如下图所示:因为椭圆的上顶点为点,焦点为、,所以,,为等边三角形,则,即,因此,.故选:C.10、A【解析】利用含有一个量词的命题的否定的定义求解.【详解】因为命题“,”是全称量词命题,所以其否定是存在量词命题,即为,,故选:A11、C【解析】设切线的方程为,然后利用圆心到直线的距离等于半径建立方程求解即可.【详解】圆的圆心为原点,半径为1,当切线的斜率不存在时,即直线的方程为,不与圆相切,当切线的斜率存在时,设切线的方程为,即所以,解得或所以切线的方程为或故选:C12、C【解析】对于A,作商比较,对于B,利用基本不等式的推广式判断,对于C,利用在单位圆中,内接正边形的面积小于内接正边形的面积判断,对于D,利用放缩法判断【详解】,故错误;,故错误;在单位圆中,内接正边形的面积小于内接正边形的面积(必修三阅读材料割圆术),则,故正确;,故错误故选:C【点睛】关键点点睛:此题考查不等式的综合应用,考查基本不等式的推广式的应用,考查放缩法的应用,对于C项解题的关键是利用了在单位圆中,内接正边形的面积小于内接正边形的面积求解,考查数学转化思想,属于难题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由抛物线的定义得:,所以,当三点共线时,最小可得答案.【详解】如图所示:,由抛物线的定义得:,所以,由图象知:当三点共线时,最小,.故答案为:.14、【解析】根据导数的几何意义,结合切线方程,即可求解.【详解】根据导数的几何意义可知,,且,所以.故答案为:15、3(答案不唯一)【解析】由已知条件结合等差数列的性质可得,则,从而可写出数列的一个通项公式【详解】因为是等差数列,且,所以,当公差为0时,;公差为1时,;…故答案为:3(答案为唯一)16、16【解析】根据椭圆定义可得:,再用基本不等式求解.【详解】由椭圆的定义可得:,由基本不等式得:,当且仅当时,等号成立,故的最大值为16故答案为:16三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)在R上单调递增,无单调递减区间;(2)证明见解析.【解析】(1)对求导,令并应用导数求最值,确定的符号,即可知的单调性.(2)利用作差法转化证明的结论,令结合导数研究其单调性,最后讨论的大小关系判断的符号即可证结论.【小问1详解】由题设,.令,则.当时,单调递减;当时,单调递增故,即,则在R上单调递增,无单调递减区间.【小问2详解】.令,则.令,则,显然在R上单调递增,且,∴当时,单调递减;当时,单调递增.故,即,在R上单调递增,又,∴当时,,;当时,,;当时,.综上,,即.【点睛】关键点点睛:第二问,应用作差法有,构造中间函数并应用导数研究单调性,最后讨论的大小证结论.18、(1)(2),,【解析】(1)利用正弦定理化简已知条件,求得,进而求得.(2)利用余弦定理求得和,由此求得三角形的面积.【小问1详解】由于,∴.又∵,∴.∴.【小问2详解】∵,且,,,∴,解得或(舍).∴,.∴.19、(1)(2)40【解析】(1)根据递推关系,判定数列是等差数列,然后求得首项和公差,进而得到通项公式;(2)令,求得,进而根据数列的前项和的意义求得当或5时,有最大值,进而求得和的最大值.【小问1详解】解:∵数列满足,∴,∴是等差数列,设的公差为d,则,即,解得,∴,∴【小问2详解】令,得,解得,所以当或5时,有最大值,且最大值为20、(1)(2)x=3或【解析】(1)首先利用点斜式求出直线的方程,再利用点到直线的距离公式求出圆心到直线的距离,最后利用垂直定理、勾股定理计算可得;(2)依题意可得点在圆外,分直线的斜率存在与不存在两种情况讨论,当直线的斜率不存在直线得到直线方程,但直线的斜率存在时设直线方程为,利用点到直线的距离公式得到方程,解得,即可得解;【小问1详解】解:根据题意,直线的方程为,即,则圆心到直线的距离为故;【小问2详解】解:根据题意,点在圆外,分两种情况讨论:当直线的斜率不存在时,过点的直线方程是,此时与圆C:相切,满足题意;当直线的斜率存在时,设直线方程为,即,直线与圆相切时,圆心到直线的距离为解得此时,直线的方程为,所以满足条件的直线的方程是或.21、(1)证明见解析;(2).【解析】(1)根据线面垂直的判定定理来证得平面.(2)建立空间直角坐标系,利用向量法来求得平面与平面所成角的余弦值.【小问1详解】由于平面,所以,由于,所以平面.【小问2详解】建立如图所示空间直角坐标系,平面的法向量为,,设平面的法向量为,则,故可设.设平面与平面所成角为,则.22、(1)(2)(3)【解析】(1)根据列举法列出所有的可能基本事件,进而得出每个学生恰好拿到自

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论