内蒙古巴彦淖尔市乌拉特前旗第一中学2023年高二上数学期末复习检测试题含解析_第1页
内蒙古巴彦淖尔市乌拉特前旗第一中学2023年高二上数学期末复习检测试题含解析_第2页
内蒙古巴彦淖尔市乌拉特前旗第一中学2023年高二上数学期末复习检测试题含解析_第3页
内蒙古巴彦淖尔市乌拉特前旗第一中学2023年高二上数学期末复习检测试题含解析_第4页
内蒙古巴彦淖尔市乌拉特前旗第一中学2023年高二上数学期末复习检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古巴彦淖尔市乌拉特前旗第一中学2023年高二上数学期末复习检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校男教师的人数为()A.167 B.137C.123 D.1132.已知等比数列中,,,则公比()A. B.C. D.3.已知函数,要使函数有三个零点,则的取值范围是()A. B.C. D.4.如图,已知直线AO垂直于平面,垂足为O,BC在平面内,AB与平面所成角的大小为,,,则异面直线AB与OC所成角的余弦值为()A. B.C. D.5.某研究所计划建设n个实验室,从第1实验室到第n实验室的建设费用依次构成等差数列,已知第7实验室比第2实验室的建设费用多15万元,第3实验室和第6实验室的建设费用共为61万元.现在总共有建设费用438万元,则该研究所最多可以建设的实验室个数是()A.10 B.11C.12 D.136.“”是“直线和直线垂直”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.设函数的导函数是,若,则()A. B.C. D.8.在等差数列{an}中,a1=2,a5=3a3,则a3等于()A.-2 B.0C.3 D.69.设,,,则,,大小关系为A. B.C. D.10.一直线过点,则此直线的倾斜角为()A.45° B.135°C.-45° D.-135°11.已知,为双曲线:的焦点,为,(其中为双曲线半焦距),与双曲线的交点,且有,则该双曲线的离心率为()A. B.C. D.12.数列中,,,若,则()A.2 B.3C.4 D.5二、填空题:本题共4小题,每小题5分,共20分。13.已知点是椭圆上任意一点,则点到直线距离的最小值为______14.已知圆,圆,则两圆的公切线条数是___________.15.如图:双曲线的左右焦点分别为,,过原点O的直线与双曲线C相交于P,Q两点,其中P在右支上,且,则的面积为___________.16.经过、两点的直线斜率为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的内角A,B,C所对的边分别为a,b,c,且(1)求B;(2)若,求的面积的最大值18.(12分)求适合下列条件的曲线的标准方程:(1),焦点在轴上的双曲线的标准方程;(2)焦点在轴上,且焦点到准线的距离是2的抛物线的标准方程19.(12分)如图,点О是正四棱锥的底面中心,四边形PQDO矩形,(1)点B到平面APQ的距离:(2)设E为棱PC上的点,且,若直线DE与平面APQ所成角的正弦值为,试求实数的值20.(12分)已知椭圆的左右焦点分别为,,点在椭圆上,与轴垂直,且(1)求椭圆的方程;(2)若点在椭圆上,且,求的面积21.(12分)已知椭圆C:的焦距为,点在C上(1)求C的方程;(2)过点的直线与C交于M,N两点,点R是直线:上任意一点,设直线RM,RQ,RN的斜率分别为,,,若,,成等差数列,求的方程.22.(10分)已知抛物线的焦点为F,以F和准线上的两点为顶点的三角形是边长为的等边三角形,过的直线交抛物线E于A,B两点(1)求抛物线E的方程;(2)是否存在常数,使得,如果存在,求的值,如果不存在,请说明理由;(3)证明:内切圆的面积小于

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据图形分别求出初中部和高中部男教师的人数,最后相加即可.【详解】初中部男教师的人数为110×(170%)=33;高中部男教师的人数为150×60%=90,∴该校男教师的人数为33+90=123.故选:C.2、C【解析】利用等比中项的性质可求得的值,再由可求得结果.【详解】由等比中项的性质可得,解得,又,,故选:C.3、A【解析】要使函数有三个解,则与图象有三个交点,数形结合即可求解.【详解】要使函数有三个解,则与图象有三个交点,因为当时,,所以,可得在上递减,在递增,所以,有最小值,且时,,当趋向于负无穷时,趋向于0,但始终小于0,当时,单调递减,由图像可知:所以要使函数有三个零点,则.故选:A4、B【解析】建立空间直角坐标系,求出相关点的坐标,求出向量的坐标,再利用向量的夹角公式计算即可.【详解】如图,以O为坐标原点,过点O作OB的垂线为x轴,OB为y轴,OA为z轴,建立空间直角坐标系,设,则,,则,,,,,设的夹角为,则,所以异面直线AB与OC所成角的余弦值为,故选:B.5、C【解析】根据等差数列通项公式,列出方程组,求出的值,进而求出令根据题意令,即可求解.【详解】设第n实验室的建设费用为万元,其中,则为等差数列,设公差为d,则由题意可得,解得,则.令,即,解得,又,所以,,所以最多可以建设12个实验室.故选:C.6、A【解析】因为直线和直线垂直,所以或,再根据充分必要条件的定义判断得解.【详解】因为“直线和直线垂直,所以或.当时,直线和直线垂直;当直线和直线垂直时,不一定成立.所以是直线和直线垂直的充分不必要条件,故选:A7、A【解析】求导后,令,可求得,再令可求得结果.【详解】因为,所以,所以,所以,所以,所以.故选:A【点睛】本题考查了导数的计算,考查了求导函数值,属于基础题.8、A【解析】利用已知条件求得,由此求得.【详解】a1=2,a5=3a3,得a1+4d=3(a1+2d),即d=-a1=-2,所以a3=a1+2d=-2.故选:A.9、C【解析】由,可得,,故选C.考点:指数函数性质10、A【解析】根据斜率公式求得直线的斜率,得到,即可求解.【详解】设直线的倾斜角为,由斜率公式,可得,即,因为,所以,即此直线的倾斜角为.故选:A.11、B【解析】根据求得的关系,结合双曲线的定义以及勾股定理,即可求得的等量关系,再求离心率即可.【详解】根据题意,连接,作图如下:显然为直角三角形,又,又点在双曲线上,故可得,解得,由勾股定理可得:,即,即,,故双曲线的离心率为.故选:B.12、C【解析】由已知得数列是以2为首项,以2为公比的等比数列,求出,再利用等比数列求和可得答案.【详解】∵,∴,所以,数列是以2为首项,以2为公比的等比数列,则,∴,∴,则,解得.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求椭圆上平行于的直线方程,利用平行线的距离公式求椭圆上点到直线的最小值.【详解】设与椭圆相切,且平行于的直线为,联立椭圆整理可得:,则,∴,又两平行线的距离,∴到直线距离的最小值为.故答案为:.14、【解析】首先把圆的一般方程化为标准方程,进一步求出两圆的位置关系,可得两圆的公切线条数.【详解】解:由圆,可得:,可得其圆心为,半径为;由,可得,可得其圆心为,半径为2;所以可得其圆心距为:,可得:,故两圆相交,其公切线条数为,故答案为:2.【点睛】本题主要考查两圆的位置关系及两圆公切线条数的判断,属于中档题.15、24【解析】利用双曲线定义结合已知求出,,再利用双曲线的对称性计算作答.【详解】依题意,,,又,解得,,则有,即,连接,如图,因过原点O的直线与双曲线C相交于P,Q两点,由双曲线的对称性知,P,Q关于原点O对称,因此,四边形是平行四边形,,所以的面积为24.故答案为:2416、【解析】利用斜率公式可求得结果.【详解】由斜率公式可知,直线的斜率为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1):根据正弦定理由边化角和三角正弦和公式即可求解;(2):根据余弦定理和均值不等式求得最大值,利用面积公式即可求解【小问1详解】由正弦定理及,得,∵,∵,∴【小问2详解】由余弦定理,∴,∴,当且仅当时等号成立,∴的面积的最大值为18、(1);(2)或【解析】(1)设方程为(,),即得解;(2)由题得,即得解.【详解】(1)解:由题意,设方程为(,),,,,,所以双曲线的标准方程是(2)焦点到准线的距离是2,,∴当焦点在轴上时,抛物线的标准方程为或19、(1)(2)或【解析】(1)以三棱锥等体积法求点到面距离,思路简单快捷.(2)由直线DE与平面APQ所成角的正弦值为,可以列关于的方程,解之即可.【小问1详解】点О是正四棱锥底面中心,点О是BD的中点,四边形PQDO矩形,,两点到平面APQ的距离相等.正四棱锥中,平面,平面,,,设点B到平面APQ的距离为d,则,即解之得,即点B到平面APQ的距离为【小问2详解】取PC中点N,连接BN、ON、DN,则.平面平面正四棱锥中,,直线平面平面,平面平面,平面平面平面中,点E到直线ON的距离即为点E到平面的距离.中,,点P到直线ON的距离为△中,,设点E到平面的距离为d,则有,则则有,整理得,解之得或20、(1);(2)【解析】(1)由椭圆的性质求出,进而得出方程;(2)由,结合余弦定理求出,再由面积公式得出三角形的面积.【详解】解:(1),与轴垂直,,∴∴椭圆的方程为(2)由(1)知,∵,∴∴,∴的面积为【点睛】关键点睛:解决问题二的关键在于利用余弦定理结合完全平方和公式求出,进而得出面积.21、(1)(2)【解析】(1)根据椭圆的焦距为,点在C上,由求解;(2)设,,,的斜率不存在时,则的方程为,与椭圆的方程联立求得M,N的坐标,由,,成等差数列求解;的斜率存在时,设的方程为,与椭圆的方程联立,然后由,,成等差数列,结合韦达定理求解;【小问1详解】解:由题意得,解得,,所以C的方程为.【小问2详解】设,,,当的斜率不存在时,则的方程为,将代入,得.因为,,成等差数列,所以,即,显然当时,方程恒成立.当的斜率存在时,设的方程为,联立得,则,.,.因为,,成等差数列,所以,即恒成立.则,解得.综上所述,的方程为.22、(1);(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论