版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古乌兰察布市集宁区第一中学2023年高二上数学期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图所示,已知三棱锥,点,分别为,的中点,且,,,用,,表示,则等于()A. B.C. D.2.某次射击比赛中,某选手射击一次击中10环的概率是,连续两次均击中10环的概率是,已知某次击中10环,则随后一次击中10环的概率是A. B.C. D.3.设是等差数列的前n项和,若,,则()A.26 B.-7C.-10 D.-134.已知函数的图象在点处的切线与直线垂直,则()A. B.C. D.5.已知函数,若对任意两个不等的正实数,,都有,则实数的最小值为()A. B.C. D.6.()A.-2 B.0C.2 D.37.已知圆与圆相交于A、B两点,则圆上的动点P到直线AB距离的最大值为()A. B.C. D.8.古希腊数学家阿波罗尼斯的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数且的点的轨迹是圆,后人将之称为阿波罗尼斯圆.现有椭圆为椭圆长轴的端点,为椭圆短轴的端点,,分别为椭圆的左右焦点,动点满足面积的最大值为面积的最小值为,则椭圆的离心率为()A. B.C. D.9.在正四面体中,棱长为2,且E是棱AB中点,则的值为A. B.1C. D.10.如图,在平行六面体中,设,,,用基底表示向量,则()A. B.C. D.11.点到直线的距离为A.1 B.2C.3 D.412.已知数列为等比数列,则“为常数列”是“成等差数列”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知点是抛物线的焦点,点分别是抛物线上位于第一、四象限的点,若,则的面积为__________.14.已知是椭圆的两个焦点,分别是该椭圆的左顶点和上顶点,点在线段上,则的最小值为__________.15.已知正方体的棱长为6,E为棱的中点,F为棱上的点,且,则___________.16.等比数列的各项均为正数,且,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,内角所对的边长分别为,是1和的等差中项(1)求角;(2)若的平分线交于点,且,求的面积18.(12分)已知抛物线的焦点到准线的距离为4,直线与抛物线交于两点.(1)求此抛物线的方程;(2)若以为直径的圆过原点O,求实数k的值.19.(12分)(1)已知双曲线的离心率为2,求E的渐近线方程;(2)已知F是抛物线的焦点,是C上一点,且,求C的方程.20.(12分)已知函数(1)当时,求的单调递减区间;(2)若关于的方程恰有两个不等实根,求实数的取值范围21.(12分)已知等差数列}的公差为整数,为其前n项和,,(1)求{}的通项公式:(2)设,数列的前n项和为,求22.(10分)已知等差数列各项均不为零,为其前项和,点在函数的图像上.(1)求的通项公式;(2)若数列满足,求的前项和;(3)若数列满足,求的前项和的最大值、最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】连接,先根据已知条件表示出,再根据求得结果.【详解】连接,如下图所示:因为为的中点,所以,又因为为的中点,所以,所以,故选:A.2、B【解析】根据条件概率的计算公式,得所求概率为,故选B.3、C【解析】直接利用等差数列通项和求和公式计算得到答案.【详解】,,解得,故.故选:C.4、C【解析】对函数求导,利用导数的几何意义结合垂直关系计算作答.【详解】函数定义域为,求导得,于是得函数的图象在点处切线的斜率,而直线的斜率为,依题意,,即,解得,所以.故选:C5、B【解析】不妨设,由题意,可得,构造函数,则在上单调递增,从而有在上恒成立,分离参数转化为最值即可求解.【详解】解:由题意,不妨设,因为对任意两个不等的正实数,,都有,所以,即,构造函数,则,所以在上单调递增,所以在上恒成立,即在上恒成立,当时,因为,所以,所以,实数的最小值为.故选:B.6、C【解析】根据定积分公式直接计算即可求得结果【详解】由故选:C7、A【解析】判断圆与的位置并求出直线AB方程,再求圆心C到直线AB距离即可计算作答.【详解】圆的圆心,半径,圆的圆心,半径,,,即圆与相交,直线AB方程为:,圆的圆心,半径,点C到直线AB距离的距离,所以圆C上的动点P到直线AB距离的最大值为.故选:A8、A【解析】由题可得动点M的轨迹方程,可得,,即求.【详解】设,,由,可得=2,化简得.∵△MAB面积的最大值为面积的最小值为,∴,,∴,即,∴故选:A9、A【解析】根据题意,由正四面体的性质可得:,可得,由E是棱中点,可得,代入,利用数量积运算性质即可得出.【详解】如图所示由正四面体的性质可得:可得:是棱中点故选:【点睛】本题考查空间向量的线性运算,考查立体几何中的垂直关系,考查转化与化归思想,属于中等题型.10、B【解析】直接利用空间向量基本定理求解即可【详解】因为在平行六面体中,,,,所以,故选:B11、B【解析】直接利用点到直线的距离公式得到答案.【详解】,答案为B【点睛】本题考查了点到直线的距离公式,属于简单题.12、C【解析】先考虑充分性,再考虑必要性即得解.【详解】解:如果为常数列,则成等差数列,所以“为常数列”是“成等差数列”的充分条件;等差数列,所以,所以数列为,所以数列是常数列,所以“为常数列”是“成等差数列”的必要条件.所以“为常数列”是“成等差数列”的充要条件.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、42【解析】由焦半径公式求得参数,得抛物线方程,从而可求得两点纵坐标,再求得直线与轴的交点坐标后可得面积【详解】因为,所以,抛物线的方程为,把代入方程,得(舍去),即.同理,直线方程为,即.所以直线与轴交于点,所以.故答案为:4214、【解析】由题可设,则,然后利用数量积坐标表示及二次函数的性质即得.【详解】由题可得,,设,因为点P在线段AB上,所以,∴,∴当时,的最小值为.故答案为:.15、18【解析】建立空间直角坐标系,利用空间向量的数量积运算求解.【详解】建立如图所示空间直角坐标系:则,所以,所以,故答案为:1816、10【解析】由等比数列的性质可得,再利用对数的性质可得结果【详解】解:因为等比数列的各项均为正数,且,所以,所以故答案为:10三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)根据是1和的等差中项得到,再利用正弦定理结合商数关系,两角和与差的三角函数化简得到求解;(2)由和求得b,c的关系,再结合余弦定理求解即可.【详解】(1)由已知得,在中,由正弦定理得,化简得,因为,所以,所以;(2)由正弦定理得,又,即,由余弦定理得,所以,所以【点睛】方法点睛:在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到18、(1)(2)【解析】(1)根据焦点到准线的距离,可得到,可得结果.(2)假设的坐标,得到,然后联立直线与抛物线的方程,利用韦达定理,根据,可得结果.【详解】(1)由题知:抛物线的焦点到准线的距离为,∴抛物线的方程为(2)设联立,得,则,,,∵以为直径圆过原点O,∴,∴,即,解得或(舍),∴【点睛】本题主要考查直线与抛物线的几何关系的应用,属基础题.19、(1);(2).【解析】(1)由可知,即可求出,故可得渐近线方程;(2)利用点在抛物线上及其抛物线的定义列方程求解即可.【详解】(1)∵E的离心率,∴,即,解得,故E的渐近线方程为.(2)∵是C上一点,∴①,由抛物线的定义可知②,两式联立可得,解得则C的方程为.20、(1);(2)【解析】(1)求出导数,令,得出变化情况表,即可得出单调区间;(2)分离参数得,构造函数,利用导数讨论单调性,根据与恰有两个不同交点即可得出.【详解】(1)当时,函数,则令,得,,当x变化时,的变化情况如下表:1+00+↗极大值↘极小值↗∴在上单调递减(2)依题意,即.则令,则当时,,故单调递增,且;当时,,故单调递减,且∴函数在处取得最大值故要使与恰有两个不同的交点,只需∴实数a的取值范围是【点睛】关键点睛:本题考查根据方程根的个数求参数,解题的关键是参数分离,构造函数利用导数讨论单调性,根据函数交点个数判断.21、(1)(2)【解析】(1)根据题意利用等差数列的性质列出方程,即可解得答案;(2)根据(1)的结果,求出的表达式,利用裂项求和的方法求得答案.小问1详解】设等差数列{}的公差为d,则,整理可得:,∵d是整数,解得,从而,所以数列{}的通项公式为:;【小问2详解】由(1)知,,所以22、(1)(2)(3)最大值为,最小值为【解析】(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学前聋儿融合教育
- 2025年65普法知识竞赛试题库及答案
- 重阳节的介绍
- 文创设计课程汇报
- 2025版急性肾炎常见症状及护理注意事项
- 2025版甲亢的症状及中医调理护理方案
- 远离暴力影响增强自我防范
- 2025版痛经常见症状及护理方法培训
- 高处作业安全培训初培理论试题及答案D
- 呼吸与危重症医学科规培护士法律法规考试题与答案
- 江西省委社会工作部2025年公开选调事业单位工作人员【10人】备考考试题库附答案解析
- 5第六章生物多样性丧失的原因课件
- 设计部工作流程
- 电气设备状态监测与故障诊断课件
- 毛概考试简答题与论述题重点
- 局部解剖学题库(网)
- 钢骨架复合管施工方案
- 五年级上册数学课件-3.1 统计(平均数)▏沪教版 (共17张PPT)
- 2022年《计算机网络安全技术》课程标准
- 新人教版小学美术五年级上册教学设计(全册)
- 沁水盆地地质概况
评论
0/150
提交评论