山西省临汾市襄汾中学2024届高二数学第一学期期末联考试题含解析_第1页
山西省临汾市襄汾中学2024届高二数学第一学期期末联考试题含解析_第2页
山西省临汾市襄汾中学2024届高二数学第一学期期末联考试题含解析_第3页
山西省临汾市襄汾中学2024届高二数学第一学期期末联考试题含解析_第4页
山西省临汾市襄汾中学2024届高二数学第一学期期末联考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省临汾市襄汾中学2024届高二数学第一学期期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.△ABC的两个顶点坐标A(-4,0),B(4,0),它的周长是18,则顶点C的轨迹方程是()A. B.(y≠0)C. D.2.等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于两点,且则的实轴长为A.1 B.2C.4 D.83.方程表示椭圆的充分不必要条件可以是()A. B.C. D.4.(2016新课标全国Ⅱ理科)已知F1,F2是双曲线E:的左,右焦点,点M在E上,MF1与轴垂直,sin,则E的离心率为A. B.C. D.25.平面的法向量,平面的法向量,已知,则等于()A B.C. D.6.由于受疫情的影响,学校停课,同学们通过三种方式在家自主学习,现学校想了解同学们对假期学习方式的满意程度,收集如图1所示的数据;教务处通过分层抽样的方法抽取4%的同学进行满意度调查,得到的数据如图2.下列说法错误的是()A.样本容量为240B.若,则本次自主学习学生的满意度不低于四成C.总体中对方式二满意学生约为300人D.样本中对方式一满意的学生为24人7.已知,分别为双曲线:的左,右焦点,以为直径的圆与双曲线的右支在第一象限交于点,直线与双曲线的右支交于点,点恰好为线段的三等分点(靠近点),则双曲线的离心率等于()A. B.C. D.8.在中,已知角A,B,C所对边为a,b,c,,,,则()A. B.C. D.19.命题,,则为()A., B.,C., D.,10.在中,角A,B,C所对的边分别为a,b,c,,则的形状为()A.正三角形 B.等腰直角三角形C.直角三角形 D.等腰三角形11.刘徽是一个伟大的数学家,他的杰作《九章算术注》和《海岛算经》是中国宝贵的数学遗产,他所提出的割圆术可以估算圆周率π,理论上能把π的值计算到任意精度.割圆术的第一步是求圆的内接正六边形的面积.若在圆内随机取一点,则此点取自该圆内接正六边形的概率是()A. B.C. D.12.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若数列满足,,设,类比课本中推导等比数列前项和公式的方法,可求得______________14.曲线围成的图形的面积为___________.15.设函数,则___________.16.对于下面这个等式我们除了可以用等比数列的求和公式获得,还可以用数学归纳法对其进行证明“”,那么在应用数学归纳法证明时,当验证是否成立时,左边的式子应该是_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,求的最大值和最小值;(2)说明的图象由函数的图象经过怎样的变换得到?18.(12分)已知圆,直线.(1)当为何值时,直线与圆相切;(2)当直线与圆相交于、两点,且时,求直线的方程.19.(12分)在中,内角A、B、C的对边分别为a、b、c,满足(1)求A的大小;(2)若,的面积为,求的周长20.(12分)如图所示,四棱锥的底面为直角梯形,,,,,底面,为的中点(1)求证:平面平面;(2)求点到平面的距离21.(12分)已知数列满足,.(1)求证数列是等差数列,并求通项公式;(2)已知数列的前项和为,求.22.(10分)圆心在轴正半轴上、半径为2的圆与直线相交于两点且.(1)求圆的标准方程;(2)若直线,圆上仅有一个点到直线的距离为1,求直线的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据三角形的周长得出,再由椭圆的定义得顶点C的轨迹为以A,B为焦点的椭圆,去掉A,B,C共线的情况,可求得顶点C的轨迹方程.【详解】因为,所以,所以顶点C的轨迹为以A,B为焦点的椭圆,去掉A,B,C共线的情况,即,所以顶点C的轨迹方程是,故选:D.【点睛】本题考查椭圆的定义,由定义求得动点的轨迹方程,求解时,注意去掉不满足的点,属于基础题.2、B【解析】设等轴双曲线的方程为抛物线,抛物线准线方程为设等轴双曲线与抛物线的准线的两个交点,,则,将,代入,得等轴双曲线的方程为的实轴长为故选3、D【解析】由“方程表示椭圆”可求得实数的取值范围,结合充分不必要条件的定义可得出结论.【详解】若方程表示椭圆,则,解得或.故方程表示椭圆的充分不必要条件可以是.故选:D.4、A【解析】由已知可得,故选A.考点:1、双曲线及其方程;2、双曲线的离心率.【方法点晴】本题考查双曲线及其方程、双曲线的离心率.,涉及方程思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型.由已知可得,利用双曲线的定义和双曲线的通径公式,可以降低计算量,提高解题速度.5、A【解析】根据两个平面平行得出其法向量平行,根据向量共线定理进行计算即可.【详解】由题意得,因为,所以(),即,解得,所以.故选:A6、B【解析】利用扇形统计图和条形统计图可求出结果【详解】选项A,样本容量为,该选项正确;选项B,根据题意得自主学习的满意率,错误;选项C,样本可以估计总体,但会有一定的误差,总体中对方式二满意人数约为,该选项正确;选项D,样本中对方式一满意人数为,该选项正确.故选:B【点睛】本题主要考查了命题真假的判断,考查扇形统计图和条形统计图等基础知识,考查运算求解能力,属于中档题7、C【解析】设,,根据双曲线的定义可得,,在中由勾股定理列方程可得,在中由勾股定理可得关于,的方程,再由离心率公式即可求解.【详解】设,则,由双曲线的定义可得:,,因为点在以为直径的圆上,所以,所以,即,解得:,在中,,,,由可得,即,所以双曲线离心率为,故选:C.第II卷(非选择题8、B【解析】利用正弦定理求解.【详解】在中,由正弦定理得,解得,故选:B.9、B【解析】直接利用特称命题的否定是全称命题写出结果即可.【详解】命题,为特称命题,而特称命题的否定是全称命题,所以命题,,则为:,.故选:B10、C【解析】根据三角恒等变换结合正弦定理化简求得,即可判定三角形形状.【详解】解:由题,得,即,由正弦定理可得:,所以,所以三角形中,所以,又,所以,即三角形为直角三角形.故选:C.11、B【解析】此点取自该圆内接正六边形的概率是正六边形面积除以圆的面积,分别求出即可.【详解】如图,在单位圆中作其内接正六边形,该正六边形是六个边长等于半径的正三角形,其面积,圆的面积为则所求概率.故选:B【点睛】此题考查几何概率模型求解,关键在于准确求出正六边形的面积和圆的面积.12、D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列.等比数列的判断方法主要有如下两种:(1)定义法,若()或(),数列等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.二、填空题:本题共4小题,每小题5分,共20分。13、n【解析】先对两边同乘以4,再相加,化简整理即可得出结果.【详解】由①得:②所以①②得:,所以,,故答案为【点睛】本题主要考查类比推理的思想,结合错位相减法思想即可求解,属于基础题型.14、##【解析】曲线围成图形关于轴,轴对称,故只需要求出第一象限的面积即可.【详解】将或代入方程,方程不发生改变,故曲线关于轴,轴对称,因此只需求出第一象限的面积即可.当,时,曲线可化为:,表示的图形为一个半圆,围成的面积为,故曲线围成的图形的面积为.故答案:.15、【解析】由的导数为,将代入,即可求出结果.【详解】因为,所以,所以.故答案为:.16、【解析】根据已知条件,结合数学归纳法的定义,即可求解.【详解】当,,故此时式子左边=.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)2,;(2)答案见解析.【解析】(1)根据,求出范围,再根据正弦函数的图像即可求值域;(2)根据正弦函数图像变换对解析式的影响即可求解.【小问1详解】当时,有,可得,故,则的最大值为2,最小值为.【小问2详解】先将函数的图象向右平移个单位长度,得到函数的图象;然后把所得图象上各点的纵坐标不变,横坐标变为原来的2倍,得到函数的图象;最后把所得图象上各点的横坐标不变,纵坐标伸长为原来的2倍,这时得到的就是函数的图象.18、(1);(2)或.【解析】(1)将圆的方程表示为标准方程,确定圆心坐标与半径,利用圆心到直线的距离可求得实数的值;(2)求出圆心到直线的距离,利用、、三者满足勾股定理可求得的方程,解出的值,即可得出直线的方程.【详解】将圆C的方程配方得标准方程为,则此圆的圆心为,半径为.(1)若直线与圆相切,则有,解得;(2)圆心到直线的距离为,由勾股定理可得,可得,整理得,解得或,故所求直线方程为或.【点睛】方法点睛:圆的弦长的常用求法(1)几何法:求圆的半径为,弦心距为,弦长为,则;(2)代数方法:运用根与系数的关系及弦长公式.19、(1)(2)【解析】(1)通过正弦定理将边化为角的关系,可得,进而可得结果;(2)由面积公式得,结合余弦定理得,进而得结果.【小问1详解】∵∴由正弦定理,得∴∵,∴,故【小问2详解】由(1)知,∵∴∵由余弦定理知,∴,故∴,故∴的周长为20、(1)证明见解析(2)【解析】(1)设与交点为,延长交的延长线于点,进而根据证明,再结合底面得,进而证明平面即可证明结论;(2)由得点到平面的距离等于点到平面的距离的,进而过作,垂足为,结合(1)得点到平面的距离等于,再在中根据等面积法求解即可.【小问1详解】证明:设与交点为,延长交的延长线于点,因为四棱锥的底面为直角梯形,,所以,所以,因为为的中点,所以,因为所以,所以,所以,所以,又因为,所以,又因为,所以,所以,所以又因为底面,所以,因为,所以平面,因为平面,所以平面平面【小问2详解】解:由于,所以,点到平面的距离等于点到平面的距离的,因为平面平面,平面平面故过作,垂足为,所以,平面,所以点到平面的距离等于在中,,所以,点到平面的距离等于.21、(1)证明见详解,(2)【解析】(1)由题意将原式化简变形得到,可证明数列是等差数列,由等差数列的通项公式则可得,进而得到的通项公式;(2)由(1)把的通项公式代入,得到,利用乘公比错位相减法求和即可.【小问1详解】若,则,这与矛盾,,由已知得,,故数列是以为首项,2为公差的等差数列,,即.【小问2详解】设,则由(1)知,所以,,两式相减,则,所以.22、(1);(2)或.【解析】(1)根据圆的弦长公式进行求解即可;(2)根据平行线的性质,结合直线与圆的位置关系进行求解即可.小问1详解】因为圆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论