




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省滕州实验中学2023年高二数学第一学期期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.圆的圆心到直线的距离为2,则()A. B.C. D.22.已知数列满足:对任意的均有成立,且,,则该数列的前2022项和()A0 B.1C.3 D.43.设函数,当自变量t由2变到2.5时,函数的平均变化率是()A.5.25 B.10.5C.5.5 D.114.等比数列的公比为q,前n项和为,设甲:,乙:是递增数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件5.如图,在平行六面体(底面为平行四边形的四棱柱)中,E为延长线上一点,,则为()A. B.C. D.6.若(为虚数单位),则复数在复平面内的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限7.已知,,若,则()A.6 B.11C.12 D.228.直线的一个法向量为()A. B.C. D.9.在空间直角坐标系中,若,,则()A. B.C. D.10.已知椭圆与椭圆,则下列结论正确的是()A.长轴长相等 B.短轴长相等C.焦距相等 D.离心率相等11.已知定义在R上的函数满足,且有,则的解集为()A B.C. D.12.已知曲线与直线总有公共点,则m的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数的最小值为______.14.函数的图象在点处的切线方程为____.15.椭圆方程为椭圆内有一点,以这一点为中点的弦所在的直线方程为,则椭圆的离心率为______16.若,满足约束条件,则的最小值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥中,,.(1)证明:平面;(2)在线段上是否存在一点,使直线与平面所成角的正弦值等于?18.(12分)已知数列的前n项和(1)求的通项公式;(2)若数列的前n项和,求数列的前n项和19.(12分)阿基米德(公元前年—公元前年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴与短半轴的乘积.已知平面直角坐标系中,椭圆:的面积为,两焦点与短轴的一个顶点构成等边三角形.(1)求椭圆的标准方程;(2)过点的直线与交于不同的两点,求面积的最大值.20.(12分)已知函数,.(1)当时,求函数的极值;(2)若存在,使不等式成立,求实数的取值范围.21.(12分)如图,在四棱锥中,底面ABCD为矩形,侧面PAD是正三角形,平面平面ABCD,M是PD的中点(1)证明:平面PCD;(2)若PB与底面ABCD所成角的正切值为,求二面角的正弦值22.(10分)在平面直角坐标系中,设椭圆()的离心率是e,定义直线为椭圆的“类准线”,已知椭圆C的“类准线”方程为,长轴长为8.(1)求椭圆C的标准方程;(2)O为坐标原点,A为椭圆C的右顶点,直线l交椭圆C于E,F两不同点(点E,F与点A不重合),且满足,若点P满足,求直线的斜率的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】配方求出圆心坐标,再由点到直线距离公式计算【详解】圆的标准方程是,圆心为,∴,解得故选:B.【点睛】本题考查圆的标准方程,考查点到直线距离公式,属于基础题2、A【解析】根据可知,数列具有周期性,即可解出【详解】因为,所以,即,所以数列中的项具有周期性,,由,,依次对赋值可得,,一个周期内项的和为零,而,所以数列的前2022项和故选:A3、B【解析】利用平均变化率的公式即得.【详解】∵,∴.故选:B.4、B【解析】当时,通过举反例说明甲不是乙的充分条件;当是递增数列时,必有成立即可说明成立,则甲是乙的必要条件,即可选出答案【详解】由题,当数列为时,满足,但是不是递增数列,所以甲不是乙的充分条件若是递增数列,则必有成立,若不成立,则会出现一正一负的情况,是矛盾的,则成立,所以甲是乙的必要条件故选:B【点睛】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程5、B【解析】根据空间向量运算求得正确答案.【详解】.故选:B6、A【解析】根据复数运算法则求出z=a+bi形式,根据复数的几何意义即可求解.【详解】,z对应的点在第一象限.故选:A7、C【解析】根据递推关系式计算即可求出结果.【详解】因为,,,则,,,故选:C.8、B【解析】直线化为,求出直线的方向向量,因为法向量与方向向量垂直,逐项验证可得答案.【详解】直线的方向向量为,化为,直线的方向向量为,因为法向量与方向向量垂直,设法向量为,所以,由于,A错误;,故B正确;,故C错误;,故D错误;故选:B.9、B【解析】直接利用空间向量的坐标运算求解.【详解】解:因为,,所以.故选:B10、C【解析】利用,可得且,即可得出结论【详解】∵,且,椭圆与椭圆的关系是有相等的焦距故选:C11、A【解析】构造,应用导数及已知条件判断的单调性,而题设不等式等价于即可得解.【详解】设,则,∴在R上单调递增.又,则.∵等价于,即,∴,即所求不等式的解集为.故选:A12、D【解析】对曲线化简可知曲线表示以点为圆心,2为半径的圆的下半部分,对直线方程化简可得直线过定点,画出图形,由图可知,,然后求出直线的斜率即可【详解】由,得,因为,所以曲线表示以点为圆心,2为半径的圆的下半部分,由,得,所以,得,所以直线过定点,如图所示设曲线与轴的两个交点分别为,直线过定点,为曲线上一动点,根据图可知,若曲线与直线总有公共点,则,得,设直线为,则,解得,或,所以,所以,所以,故选:D二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】由解析式知定义域为,讨论、、,并结合导数研究的单调性,即可求最小值.【详解】由题设知:定义域为,∴当时,,此时单调递减;当时,,有,此时单调递减;当时,,有,此时单调递增;又在各分段的界点处连续,∴综上有:时,单调递减,时,单调递增;∴故答案为:1.14、【解析】先求出导函数,进而根据导数的几何意义求出切线的斜率,然后求出切线方程.【详解】由题意,,,则切线方程为:.故答案为:.15、【解析】设,利用“点差法”得到,即可求出离心率.【详解】设直线与椭圆交于,则.因为AB中点,则.又,相减得:.所以所以所以,所以,即离心率.故答案为:.16、0【解析】作出约束条件对应的可行域,当目标函数过点时,取得最小值,求解即可.【详解】作出约束条件对应的可行域,如下图阴影部分,联立,可得交点为,目标函数可化为,当目标函数过点时,取得最小值,即.故答案为:0.【点睛】本题考查线性规划,考查数形结合的数学思想的应用,考查学生的计算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)详解解析;(2)存在.【解析】(1)利用勾股定理证得,结合线面垂直的判定定理即可证得结论;(2)以A为原点建立空间直角坐标系,设点,,求得平面的法向量,利用已知条件建立关于的方程,进而得解.【小问1详解】取中点为,连接,在中,,,,又,,所以,又,,而,所以,又,,,又,,平面.【小问2详解】以A为坐标原点,以为x轴,为y轴,为z轴建立空间直角坐标系,则,,,,设点,因为点F在线段上,设,,,设平面的法向量为,,,则,令,则,设直线CF与平面所成角为,,解得或(舍去),,此时点F是的三等分点,所以在线段上是存在一点,使直线与平面所成角的正弦值等于.18、(1),;(2),.【解析】(1)根据的关系可得,根据等比数列的定义写出的通项公式,进而可得的通项公式;(2)利用的关系求的通项公式,结合(1)结论可得,再应用分组求和、错位相消法求的前n项和【小问1详解】.①当时,,可得当时,.②①-②得,则,而a1-1=1不为零,故是首项为1,公比为2的等比数列,则∴数列的通项公式为,【小问2详解】∵,∴当时,,当时,,又也适合上式,∴,∴,令,,则,又,∴19、(1);(2).【解析】(1)根据题意计算得到,得到椭圆方程.(2)设直线的方程为,联立方程,根据韦达定理得到,,表示出,解得答案.【详解】(1)依题意有解得所以椭圆的标准方程是.(2)由题意直线的斜率不能为,设直线的方程为,由方程组得,设,,所以,,所以,所以,令(),则,,因为在上单调递增,所以当,即时,面积取得最大值为.【点睛】本题考查了椭圆方程,椭圆内三角形面积的最值问题,意在考查学生的计算能力和综合应用能力.20、(1)函数在上递增,在上递减,极大值为,无极小值(2)【解析】(1)求出函数的导函数,再根据导数的符号求得单调区间,再根据极值的定义即可得解;(2)若存在,使不等式成立,问题转化为,令,,利用导数求出函数的最大值即可得出答案.【小问1详解】解:当时,,则,当时,,当时,,所以函数在上递增,在上递减,所以函数的极大值为,无极小值;【小问2详解】解:若存在,使不等式成立,则,即,则问题转化为,令,,,当时,,当时,,所以函数在递增,在上递减,所以,所以.21、(1)证明见解析(2)【解析】(1)依题意可得,再根据面面垂直的性质得到平面,即可得到,即可得证;(2)取的中点为,连接,根据面面垂直的性质得到平面,连接,即可得到为与底面所成角,令,,利用锐角三角函数的定义求出,建立如图所示空间直角坐标系,利用空间向量法求出二面角的余弦值,即可得解;【小问1详解】解:证明:在正中,为的中点,∴∵平面平面,平面平面,且.∴平面,又∵平面∴.又∵,且,平面.∴平面【小问2详解】解:如图,取的中点为,连接,在正中,,平面平面,平面平面,∴平面,连接,则为与底面所成角,即.不妨取,,,,∴以为原点建立如图所示的空间直角坐标系,则有,,,,,,∴,设面的一个法向量为,则由令,则,又因为面,取作为面的一个法向量,设二面角为,∴,∴,因此二面角的正弦值为22、(1);(2).【解析】(1)由题意列关于,,的方程,联立方程组求得,,,则椭圆方程可求;(2)分直线轴与直线l不垂直于x轴两种情况讨论,当直线l不垂直于x轴时,设,,直线l:(,),联立直线方程与椭圆方程,消元由,得到,再列出韦达定理,由则,解得,再由,求出的坐标,则,再利用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 作文父母之爱教学课件
- 2025年教师资格之中学物理学科知识与教学能力全真模拟考试试卷A卷含答案
- 多媒体教学课件制作范文
- 2025年江苏泰兴市新源农产品加工投资发展有限公司招聘8人笔试历年参考题库附带答案详解
- 电石生产主要设备梁奇雄45课件
- Brand KPIs for milk:Bärenmarke in Germany-英文培训课件2025
- 2025年全国中国古代文学常识知识竞赛试题库含答案
- 小学生简历课件
- 小学生科技论坛会课件
- 小学生种植凤仙花课件
- (正式版)JBT 3300-2024 平衡重式叉车 整机试验方法
- 咸阳市三原县社工招聘笔试真题
- 夏季高温期间建筑施工安全注意事项
- 甲型流感培训课件
- 双人徒手心肺复苏培训
- 康复医学科常用技术操作规范
- 《金融反欺诈与大数据风控研究报告(2023)》
- 2023年荆州市荆州区社区工作者招聘考试真题
- 传播学概论课件
- 中小学生天文知识竞赛(129题含答案)
- 机关公文写作培训讲义课件
评论
0/150
提交评论